Deep Brain Stimulation

You are looking at 1 - 4 of 4 items for

  • By Author: Lozano, Andres M. x
Clear All
Restricted access

Hiroki Toda, Clement Hamani, Adrian P. Fawcett, William D. Hutchison and Andres M. Lozano

Object

To examine the influence of deep brain stimulation on hippocampal neurogenesis in an adult rodent model.

Methods

Rats were anesthetized and treated for 1 hour with electrical stimulation of the anterior nucleus of the thalamus (AN) or sham surgery. The animals were injected with 5′-bromo-2′-deoxyuridine (BrdU) 1–7 days after surgery and killed 24 hours or 28 days later. The authors counted the BrdU-positive cells in the dentate gyrus (DG) of the hippocampus. To investigate the fate of these cells, they also stained sections for doublecortin, NeuN, and GFAP and analyzed the results with confocal microscopy. In a second set of experiments they assessed the number of DG BrdU-positive cells in animals treated with corticosterone (a known suppressor of hippocampal neurogenesis) and sham surgery, corticosterone and AN stimulation, or vehicle and sham surgery.

Results

Animals receiving AN high-frequency stimulation (2.5 V, 90 μsec, 130 Hz) had a 2- to 3-fold increase in the number of DG BrdU-positive cells compared with nonstimulated controls. This increase was not seen with stimulation at 10 Hz. Most BrdU-positive cells assumed a neuronal cell fate. As expected, treatment with corticosterone significantly reduced the number of DG BrdU-positive cells. This steroid-induced reduction of neurogenesis was reversed by AN stimulation.

Conclusions

High-frequency stimulation of the AN increases the hippocampal neurogenesis and restores experimentally suppressed neurogenesis. Interventions that increase hippocampal neurogenesis have been associated with enhanced behavioral performance. In this context, it may be possible to use electrical stimulation to treat conditions associated with impairment of hippocampal function.

Restricted access

Sylvie Raoul, Dominique Leduc, Thomas Vegas, Paul Sauleau, Andres M. Lozano, Marc Vérin, Philippe Damier and Youenn Lajat

Object

Deep brain stimulation (DBS) has been shown to be an effective treatment for various types of movement disorders. High-frequency stimulation is applied to specific brain targets through an implanted quadripolar lead connected to a pulse generator. These leads can be used for creating lesions in the brain. The experimental study reported here was designed to examine the electrical parameters that could be used to create reproducible therapeutic lesions in the brain.

Methods

Egg whites were used to measure the relationship between the electrical parameters (current and voltage) applied through the DBS electrode and the size of coagulum. The authors measured current spread from the electrode contact used for lesioning to the adjacent contact. Similar studies were performed in the pallidum or the thalamus of human cadavers. Modeling of the lesion size was performed with simulation of current density and temperature. The ultrastructure of the electrodes after lesioning was verified by electron microscopy.

Results

Coagulation size increased with time but reached a plateau after 30 seconds. For a given set of electrical parameters, reproducibility of the size of lesions was high. Using constant voltage, lesions were larger in egg whites than in cadaveric brains with a mean length of 5 ± 0.6 mm in egg whites at 40 V, 125 mA, impedance 233 Ω; and 4.0 ± 0.8 mm in cadavers at 40 V, 38 mA, impedance 1333 Ω. Computer modeling indicated negligible current flow to the adjacent, unused electrodes. The electrodes showed no structural alterations on scanning electron microscopy after more than 200 lesions.

Conclusions

Results of this study demonstrate that DBS electrodes can be used to generate lesions reproducibly in the brain. The choice of lesioning parameters must take into account differences in impedance between the test medium (egg whites) and the human brain parenchyma.

Restricted access

Robert J. Coffey and Andres M. Lozano

Object

Neurostimulation to treat chronic pain includes approved and investigational therapies directed at the spinal cord, thalamus, periaqueductal or periventricular gray matter, motor cortex, and peripheral nerves. Persistent pain after surgery and work-related or neural injuries are common indications for such treatments. In light of the risks, efforts, costs, and expectations associated with neurostimulation therapies, a careful reexamination of the methods used to gather evidence for this treatment’s long-term efficacy is in order.

Methods

The authors combed English-language publications to determine the nature of the evidence supporting the efficacy of neurostimulation therapies for chronic noncancer pain. To formulate recommendations for the design of future studies, the results of their analysis were compared with established guidelines for the evaluation of medical evidence.

Evidence supporting the efficacy of neurostimulation has been collected predominantly from retrospective series or from prospective studies whose design or methods of analysis make them subject to limited interpretation. To date, there has been no successful clinical study focused on establishing the efficacy of neurostimulation for pain and incorporating sufficient numbers of participants, matched control groups, sham stimulation, randomization, prospectively defined end points, and methods for controlling experimental bias. Currently available data provide little support for the common practices of psychological or pharmacological screening or trial stimulation to predict and/or improve long-term results.

Conclusions

These findings do not diminish the value of previous investigations or positive patient experiences and do not mean that the treatments are ineffective; rather, they reveal that new data are required to answer the questions raised in and by previous study data. Future analyses of emerging neurostimulation modalities for pain should, whenever feasible, require unambiguous diagnoses as an entry criterion and should involve the use of randomization, parallel control groups that receive sham stimulation, and blinding of patients, investigators, and device programmers. Given the chronicity of patient symptoms and stimulation therapies, efficacy should be studied for 1 year or longer after device implantation. Meticulous study methods are especially important to evaluate new therapies like motor cortex and occipital nerve stimulation.

Restricted access

Ali R. Rezai, Andres M. Lozano, Adrian P. Crawley, Michael L. G. Joy, Karen D. Davis, Chun L. Kwan, Jonathan O. Dostrovsky, Ronald R. Tasker and David J. Mikulis

✓ The utility of functional magnetic resonance (fMR) imaging in patients with implanted thalamic electrodes has not yet been determined. The aim of this study was to establish the safety of performing fMR imaging in patients with thalamic deep brain stimulators and to determine the value of fMR imaging in detecting cortical and subcortical activity during stimulation.

Functional MR imaging was performed in three patients suffering from chronic pain and two patients with essential tremor. Two of the three patients with pain had undergone electrode implantation in the thalamic sensory ventralis caudalis (Vc) nucleus and the other had undergone electrode implantation in both the Vc and the periventricular gray (PVG) matter. Patients with tremor underwent electrode implantation in the ventralis intermedius (Vim) nucleus. Functional MR imaging was performed during stimulation by using a pulse generator connected to a transcutaneous extension lead. Clinically, Vc stimulation evoked paresthesias in the contralateral body, PVG stimulation evoked a sensation of diffuse internal body warmth, and Vim stimulation caused tremor arrest.

Functional images were acquired using a 1.5-tesla MR imaging system. The Vc stimulation at intensities provoking paresthesias resulted in activation of the primary somatosensory cortex (SI). Stimulation at subthreshold intensities failed to activate the SI. Additional stimulation-coupled activation was observed in the thalamus, the secondary somatosensory cortex (SII), and the insula. In contrast, stimulation of the PVG electrode did not evoke paresthesias or activate the SI, but resulted in medial thalamic and cingulate cortex activation. Stimulation in the Vim resulted in thalamic, basal ganglia, and SI activation.

An evaluation of the safety of the procedure indicated that significant current could be induced within the electrode if a faulty connecting cable (defective insulation) came in contact with the patient. Simple precautions, such as inspection of wires for fraying and prevention of their contact with the patient, enabled the procedure to be conducted safely. Clinical safety was further corroborated by performing 86 MR studies in patients in whom electrodes had been implanted with no adverse clinical effects.

This is the first report of the use of fMR imaging during stimulation with implanted thalamic electrodes. The authors' findings demonstrate that fMR imaging can safely detect the activation of cortical and subcortical neuronal pathways during stimulation and that stimulation does not interfere with imaging. This approach offers great potential for understanding the mechanisms of action of deep brain stimulation and those underlying pain and tremor generation.