Deep Brain Stimulation

You are looking at 1 - 2 of 2 items for

  • Refine by Access: all x
  • By Author: Katayama, Yoichi x
Clear All
Restricted access

Direct inhibition of levodopa-induced beginning-of-dose motor deterioration by subthalamic nucleus stimulation in a patient with Parkinson disease

Case report

Hideki Oshima, Yoichi Katayama, Chikashi Fukaya, Toshikazu Kano, Kazutaka Kobayashi, Takamitsu Yamamoto, and Yutaka Suzuki

✓Beginning-of-dose motor deterioration (BDMD) is a complication of levodopa medications in Parkinson disease (PD) that is presumably caused by inhibitory effects of levodopa. Only limited experience of BDMD has been described in the literature. The authors report the case of a patient with PD who demonstrated a marked BDMD while being treated with standard levodopa medications. This 55-year-old woman had a 12-year history of PD and a 10-year history of levodopa treatment. Marked exacerbation of symptoms occurred 15 to 20 minutes after every dose of levodopa at 100 mg and lasted approximately 15 minutes. The PD symptoms, particularly tremor and rigidity, were exacerbated more markedly during this period than during the wearing-off deterioration. The BDMD could be controlled very well by subthalamic nucleus (STN) stimulation without any change in the regimen of levodopa medications. These observations suggest that the BDMD was inhibited by STN stimulation through a direct effect.

Restricted access

Thalamic deep brain stimulation for writer's cramp

Chikashi Fukaya, Yoichi Katayama, Toshikazu Kano, Takafumi Nagaoka, Kazutaka Kobayashi, Hideki Oshima, and Takamitsu Yamamoto


Writer's cramp is a type of idiopathic focal hand dystonia characterized by muscle cramps that accompany execution of the writing task specifically. In this report, the authors describe the clinical outcome after thalamic deep brain stimulation (DBS) therapy in patients with writer's cramp and present an illustrative case with which they compare the effects of pallidal and thalamic stimulation. In addition to these results for the clinical effectiveness, they also examine the best point and pattern for therapeutic stimulation of the motor thalamus, including the nucleus ventrooralis (VO) and the ventralis intermedius nucleus (VIM), for writer's cramp.


The authors applied thalamic DBS in five patients with writer's cramp. The inclusion criteria for the DBS trial in this disorder were a diagnosis of idiopathic writer's cramp and the absence of a positive response to medication. The exclusion criteria included significant cognitive dysfunction, active psychiatric symptoms, and evidence of other central nervous system diseases or other medical disorders. In one of the cases, DBS leads were implanted into both the globus pallidus internus and the VO/VIM, and test stimulation was performed for 1 week. The authors thus had an opportunity to compare the effects of pallidal and thalamic stimulation in this patient.


Immediately after the initiation of thalamic stimulation, the neurological deficits associated with writer's cramp were improved in all five cases. Postoperatively all preoperative scale scores indicating the seriousness of the writer's cramp were significantly lower (p < 0.001). In the patient in whom two DBS leads were implanted, the clinical effect of thalamic stimulation was better than that of pallidal stimulation. During the thalamic stimulation, the maximum effect was obtained when stimulation was applied to both the VO and the VIM widely, compared with being applied only within the VO.


The authors successfully treated patients with writer's cramp by thalamic DBS. Insofar as they are aware, this is the first series in which writer's cramp has been treated with DBS. Thalamic stimulation appears to be a safe and valuable therapeutic option for writer's cramp.