Disorders of learning and memory have a large social and economic impact in today's society. Unfortunately, existing medical treatments have shown limited clinical efficacy or potential for modification of the disease course. Deep brain stimulation is a successful treatment for movement disorders and has shown promise in a variety of other diseases including psychiatric disorders. The authors review the potential of neuromodulation for the treatment of disorders of learning and memory. They briefly discuss learning circuitry and its involvement in Alzheimer disease and traumatic brain injury. They then review the literature supporting various targets for neuromodulation to improve memory in animals and humans. Multiple targets including entorhinal cortex, fornix, nucleus basalis of Meynert, basal ganglia, and pedunculopontine nucleus have shown a promising potential for improving dysfunctional memory by mechanisms such as altering firing patterns in neuronal networks underlying memory and increasing synaptic plasticity and neurogenesis. Significant work remains to be done to translate these findings into durable clinical therapies.
Best of 2016
Neuromodulation for restoring memory
Sarah K. B. Bick and Emad N. Eskandar
Optical technologies for intraoperative neurosurgical guidance
Pablo A. Valdés, David W. Roberts, Fa-Ke Lu, PhD, and Alexandra Golby
Biomedical optics is a broadly interdisciplinary field at the interface of optical engineering, biophysics, computer science, medicine, biology, and chemistry, helping us understand light–tissue interactions to create applications with diagnostic and therapeutic value in medicine. Implementation of biomedical optics tools and principles has had a notable scientific and clinical resurgence in recent years in the neurosurgical community. This is in great part due to work in fluorescence-guided surgery of brain tumors leading to reports of significant improvement in maximizing the rates of gross-total resection. Multiple additional optical technologies have been implemented clinically, including diffuse reflectance spectroscopy and imaging, optical coherence tomography, Raman spectroscopy and imaging, and advanced quantitative methods, including quantitative fluorescence and lifetime imaging. Here we present a clinically relevant and technologically informed overview and discussion of some of the major clinical implementations of optical technologies as intraoperative guidance tools in neurosurgery.