Best of 2017

You are looking at 1 - 4 of 4 items for :

  • Journal of Neurosurgery x
  • Refine by Access: all x
Clear All
Full access
Free access

Abuzer Güngör, Serhat Baydin, Erik H. Middlebrooks, Necmettin Tanriover, Cihan Isler, and Albert L. Rhoton Jr.

OBJECTIVE

The relationship of the white matter tracts to the lateral ventricles is important when planning surgical approaches to the ventricles and in understanding the symptoms of hydrocephalus. The authors' aim was to explore the relationship of the white matter tracts of the cerebrum to the lateral ventricles using fiber dissection technique and MR tractography and to discuss these findings in relation to approaches to ventricular lesions.

METHODS

Forty adult human formalin-fixed cadaveric hemispheres (20 brains) and 3 whole heads were examined using fiber dissection technique. The dissections were performed from lateral to medial, medial to lateral, superior to inferior, and inferior to superior. MR tractography showing the lateral ventricles aided in the understanding of the 3D relationships of the white matter tracts with the lateral ventricles.

RESULTS

The relationship between the lateral ventricles and the superior longitudinal I, II, and III, arcuate, vertical occipital, middle longitudinal, inferior longitudinal, inferior frontooccipital, uncinate, sledge runner, and lingular amygdaloidal fasciculi; and the anterior commissure fibers, optic radiations, internal capsule, corona radiata, thalamic radiations, cingulum, corpus callosum, fornix, caudate nucleus, thalamus, stria terminalis, and stria medullaris thalami were defined anatomically and radiologically. These fibers and structures have a consistent relationship to the lateral ventricles.

CONCLUSIONS

Knowledge of the relationship of the white matter tracts of the cerebrum to the lateral ventricles should aid in planning more accurate surgery for lesions within the lateral ventricles.

Free access

Stephen Honeybul, David Anthony Morrison, Kwok M. Ho, Christopher R. P. Lind, and Elizabeth Geelhoed

OBJECTIVE

Autologous bone is usually used to reconstruct skull defects following decompressive surgery. However, it is associated with a high failure rate due to infection and resorption. The aim of this study was to see whether it would be cost-effective to use titanium as a primary reconstructive material.

METHODS

Sixty-four patients were enrolled and randomized to receive either their own bone or a primary titanium cranioplasty. All surgical procedures were performed by the senior surgeon. Primary and secondary outcome measures were assessed at 1 year after cranioplasty.

RESULTS

There were no primary infections in either arm of the trial. There was one secondary infection of a titanium cranioplasty that had replaced a resorbed autologous cranioplasty. In the titanium group, no patient was considered to have partial or complete cranioplasty failure at 12 months of follow-up (p = 0.002) and none needed revision (p = 0.053). There were 2 deaths unrelated to the cranioplasty, one in each arm of the trial. Among the 31 patients who had an autologous cranioplasty, 7 patients (22%) had complete resorption of the autologous bone such that it was deemed a complete failure. Partial or complete autologous bone resorption appeared to be more common among young patients than older patients (32 vs 45 years old, p = 0.013). The total cumulative cost between the 2 groups was not significantly different (mean difference A$3281, 95% CI $−9869 to $3308; p = 0.327).

CONCLUSIONS

Primary titanium cranioplasty should be seriously considered for young patients who require reconstruction of the skull vault following decompressive craniectomy.

Clinical trial registration no.: ACTRN12612000353897 (anzctr.org.au)

Free access

Justin A. Neira, Timothy H. Ung, Jennifer S. Sims, Hani R. Malone, Daniel S. Chow, Jorge L. Samanamud, George J. Zanazzi, Xiaotao Guo, Stephen G. Bowden, Binsheng Zhao, Sameer A. Sheth, Guy M. McKhann II, Michael B. Sisti, Peter Canoll, Randy S. D'Amico, and Jeffrey N. Bruce

OBJECTIVE

Extent of resection is an important prognostic factor in patients undergoing surgery for glioblastoma (GBM). Recent evidence suggests that intravenously administered fluorescein sodium associates with tumor tissue, facilitating safe maximal resection of GBM. In this study, the authors evaluate the safety and utility of intraoperative fluorescein guidance for the prediction of histopathological alteration both in the contrast-enhancing (CE) regions, where this relationship has been established, and into the non-CE (NCE), diffusely infiltrated margins.

METHODS

Thirty-two patients received fluorescein sodium (3 mg/kg) intravenously prior to resection. Fluorescence was intraoperatively visualized using a Zeiss Pentero surgical microscope equipped with a YELLOW 560 filter. Stereotactically localized biopsy specimens were acquired from CE and NCE regions based on preoperative MRI in conjunction with neuronavigation. The fluorescence intensity of these specimens was subjectively classified in real time with subsequent quantitative image analysis, histopathological evaluation of localized biopsy specimens, and radiological volumetric assessment of the extent of resection.

RESULTS

Bright fluorescence was observed in all GBMs and localized to the CE regions and portions of the NCE margins of the tumors, thus serving as a visual guide during resection. Gross-total resection (GTR) was achieved in 84% of the patients with an average resected volume of 95%, and this rate was higher among patients for whom GTR was the surgical goal (GTR achieved in 93.1% of patients, average resected volume of 99.7%). Intraoperative fluorescein staining correlated with histopathological alteration in both CE and NCE regions, with positive predictive values by subjective fluorescence evaluation greater than 96% in NCE regions.

CONCLUSIONS

Intraoperative administration of fluorescein provides an easily visualized marker for glioma pathology in both CE and NCE regions of GBM. These findings support the use of fluorescein as a microsurgical adjunct for guiding GBM resection to facilitate safe maximal removal.