Recovery from hemidiaphragmatic paralysis with improved respiratory function following cervical laminoplasty and foraminotomy: illustrative case

Kazushi Kitamura, MD, Hideki Hayashi, MD, PhD, Ryota Ishibashi, MD, and Hiroki Toda, MD, PhD

Department of Neurosurgery, Tazuke Kofukai Medical Research Institute and Kitano Hospital, Osaka, Japan

BACKGROUND Hemidiaphragmatic paralysis can occasionally be caused by cervical canal and foraminal stenosis. Rarely is the effect of surgical decompression on hemidiaphragmatic paralyzed patient respiratory function recorded. This report details a case of postoperative respiratory function restoration in a patient with cervical spondylosis–related hemidiaphragmatic paralysis.

OBSERVATIONS A 77-year-old woman suffered hemidiaphragmatic paralysis caused by cervical canal and foraminal stenosis. The phrenic nerve palsy was thought to be caused by compression of the cervical spinal cord and its nerve root. The patient received a C3 laminectomy, a C4–6 laminoplasty, and a left C3–4 and C4–5 posterior foraminotomy. After surgery, she improved her maximum inspiratory pressure and respiratory function.

LESSONS Cervical canal and foraminal stenosis may cause hemidiaphragmatic paralysis due to radiculopathy-induced phrenic nerve palsy. Laminoplasty and posterior foraminotomy can restore respiratory dysfunction related to diaphragmatic paralysis by decompressing the ventral horn of the spinal cord and spinal nerve root.

KEYWORDS diaphragmatic paralysis; cervical foraminal stenosis; exoscope; respiratory function

Hemidiaphragmatic paralysis may occur from direct trauma and phrenic nerve damage due to an adjacent tumor, neuropathy, inflammation, or iatrogenic procedure.¹ Cervical spondylosis is a rare cause of phrenic nerve palsy and hemidiaphragmatic paralysis.² We encountered a woman with cervical spondylosis with foraminal stenosis who experienced symptomatic hemidiaphragmatic paralysis. The patient received cervical laminoplasty and foraminotomy using an exoscope.

Illustrative Case

History
A 77-year-old woman experienced numbness in both arms and hands with hand clumsiness for a few years. Two months before her presentation to our hospital, the patient had difficulty raising her left arm. In addition, she developed dyspnea on exertion. Her medical history included hypertension and diabetes mellitus. She had undergone carpal tunnel release for right carpal tunnel syndrome 15 years earlier. Additionally, the patient had undergone a right C6–7 uncovertebrectomy for right cervical radiculopathy 10 years earlier. She had a history of smoking 20 cigarettes per day until 17 years earlier.

Examination
The patient had left arm weakness. Her Medical Research Council grades were 3/5, 4/5, and 4/5 for the left deltoid, left biceps, and left triceps, respectively. The bilateral biceps and brachioradialis reflexes and right triceps reflex were diminished. Dysesthesia was observed in the bilateral C5–7 dermatome. The gait was spastic.

Cervical computed tomography (CT) revealed left C3–4 and C4–5 foraminal stenosis due to osteophytes (Fig. 1A and B). Magnetic resonance imaging (MRI) demonstrated significant compression of the cervical spinal cord at C3–6, most prominent at C3–4. The left C4
nerve root was compressed due to the thickening of the facet at the left C3–4 foraminal space (Fig. 1C–E).

An inspiration chest radiograph showed elevation of the left dome of the diaphragm (Fig. 2A). Pulmonary function tests using a spirometer (DISCOM 21FXIII, Chest MI) demonstrated respiratory dysfunction. The values of respiratory function parameter (percentage predicted values) were as follows: vital capacity, 1.63 L (76.5%); tidal volume, 0.38 L; and forced vital capacity, 1.56 L (78.8%). These values also comprised forced expiratory volume in 1 second (0%), 71.79% (91.3%); maximal inspiratory pressure (MIP), 38.6 cm H₂O (78.9%); and maximal expiratory pressure (MEP), 53.2 cm H₂O (78.7%).

The patient was diagnosed with cervical spondylotic myelopathy and left C4 and C5 radiculopathy, which induced hemidiaphragmatic paralysis.

Operation

The patient received C3 laminectomy, C4–6 open-door laminoplasty, C2 and C7 dome laminectomy, and left C3–4 and C4–5 posterior foraminotomy under a high-definition (4K) three-dimensional (3D) exoscope orbital camera system (ORBEYE, Olympus; Fig. 3A). The foraminotomy decompressed the left C4 and C5 nerve root sleeves (Fig. 3B).

Postoperative Course

After the operation, symptoms of hand clumsiness, spastic gait disturbance, and dyspnea improved. Postoperative cervical CT (Fig. 3C and D) and MRI (Fig. 3E and F) revealed an expansion of the cervical spinal canal and left C3–4 and C4–5 foraminal spaces. Chest radiography 1 week after the operation showed improvement in the left diaphragm paralysis (Fig. 2B). Respiratory function parameters also improved significantly. The respiratory muscle strength graph showed that respiratory muscle strength increased at 1, 3, and 6 months after surgery.
function recovery was confirmed using a spirometer at 1, 3, and 6 months after surgery. The MIP and MEP recovered well postoperatively. The MIP values (percentage predicted values) at 1 month, 3 months, and 6 months postoperatively were 46.4 cm H2O (94.9%), 55.7 cm H2O (113.9%), and 59.8 cm H2O (124.1%), respectively (Fig. 2C). Similarly, MEP values were 62.0 cm H2O (91.7%), 72.7 cm H2O (107.5%), and 122.3 cm H2O (181.7%), respectively.

Discussion

Observations

Cervical spondylosis is a rare cause of hemidiaphragmatic paralysis.2–4 A literature search identified seven cases of hemidiaphragmatic paralysis related to cervical spondylosis5–11 (Table 1). These patients had dyspnea with motor and sensory symptoms from cervical myelopathy and radiculopathy.5–7,9–11 A case that solely exhibits dyspnea and

<table>
<thead>
<tr>
<th>Authors & Year</th>
<th>Age (yrs)/Sex</th>
<th>Diaph Side</th>
<th>Weakness/Pain/Dyspnea</th>
<th>Canal/Foraminal Stenosis</th>
<th>Surgery</th>
<th>Time to Diaph Recovery</th>
<th>FU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hayashi et al., 20059</td>
<td>64/M</td>
<td>Lt</td>
<td>Rt C5, lt C5–7/lt C4/Y</td>
<td>C2–3/NA</td>
<td>C3–7 lam</td>
<td>6 wks</td>
<td>2 yrs</td>
</tr>
<tr>
<td>Weiss et al., 20115</td>
<td>59/M</td>
<td>Lt</td>
<td>NA/lt arm/NA</td>
<td>NA/lt C2–3, C3–4</td>
<td>C2–3, 3–4 foram</td>
<td>~10 mos</td>
<td>10 mos</td>
</tr>
<tr>
<td>Yu et al., 201610</td>
<td>82/M</td>
<td>Rt</td>
<td>UE/bilat UE/Y</td>
<td>C2–7/NA</td>
<td>C2–6 lam & fusion</td>
<td>Gradual relief</td>
<td>12 mos</td>
</tr>
<tr>
<td>Singleton et al., 20186</td>
<td>64/M</td>
<td>Rt</td>
<td>Rt UE/NA/Y</td>
<td>NA/rt C3–4, C4–5</td>
<td>C3–4, 4–5 foram</td>
<td>~3 mos</td>
<td>3 mos</td>
</tr>
<tr>
<td>Manabe et al., 20187</td>
<td>70/M</td>
<td>Rt</td>
<td>Bilat deltoïd, rt biceps/Rt C5/NA</td>
<td>C3–4/rt C3–4, lt C4–5</td>
<td>Rt C3–4, lt C4–5 foram, C2–5 fusion</td>
<td>2 wks</td>
<td>2 yrs</td>
</tr>
<tr>
<td>Park et al., 20208</td>
<td>59/M</td>
<td>Rt</td>
<td>None/none/Y</td>
<td>None/rt C3–4, C4–5</td>
<td>C3–4, 4–5 foram</td>
<td>3 mos</td>
<td>3 mos</td>
</tr>
<tr>
<td>Durand & Daniels, 202011</td>
<td>50/M</td>
<td>Rt</td>
<td>None/shoulder/Y</td>
<td>NA/rt C3–4</td>
<td>C3–4 ACDF</td>
<td>Resolved, not specified</td>
<td>NA</td>
</tr>
<tr>
<td>Present case</td>
<td>77/F</td>
<td>Lt</td>
<td>Bilat UE/bilat UE/Y</td>
<td>C3–6/rt C3–4, C4–5</td>
<td>C3–6 lam, C3–4, 4–5 foram</td>
<td>1 wk</td>
<td>6 mos</td>
</tr>
</tbody>
</table>

ACDF = anterior cervical discectomy and fusion; bilat = bilateral; diaph = hemidiaphragmatic paralysis; foram = foraminotomy; FU = follow up; lam = laminoplasty or laminectomy; NA = not available; UE = upper extremity; Y = yes; ~ = within.
no other accompanying spinal symptoms may create a diagnostic challenge.8

In these cases, as well as the present case, phrenic nerve palsy is considered to cause hemidiaphragmatic paralysis. The phrenic nerve originates mostly from the C4 nerve root but also occasionally from the C3 and C5 nerve root; hence, spinal nerve root compression at the C4 level, and maybe at the C3 and C5 levels, is the cause of phrenic nerve palsy.9 Phrenic nerve palsy may also result from compression of the spinal cord’s ventral horn cells.10

It is challenging to pinpoint the precise location of the stenotic lesion that is causing the phrenic nerve palsy. In most of these instances, the cervical canal and numerous levels of the cervical foramina developed spondylotic stenosis. As a result, some patients had multilevel foraminotomies5–8 and cervical laminoplasty with foraminotomy.7,9,10 It is advised to decompress both the spinal nerve roots consisting of the phrenic nerve and the ventral horn cells of the spinal cord to cover the potential pathogenetic regions. The posterior foraminotomy frequently necessitates the angled surgical trajectory. A 4K 3D exoscope,13 like other surgical illumination modalities, is suitable for such observation in a constrained surgical field.14

In our patient, hemidiaphragmatic paralysis resolved postoperatively within a week, and respiratory muscle strength improved concurrently. Repeated chest radiography15 and spirometry2 demonstrated recovery from hemidiaphragmatic paralysis and improved respiratory function following surgery. Repeated MEP and MEP readings on the spirometry indicated that the respiratory muscle strength had recovered. The MEP measures that for the chest and abdominal wall whereas MEP measures a mobility index for the diaphragm (Fig. 2C). Therefore, the overall respiratory function may benefit from hemidiaphragmatic paralysis recovery.

In the reported cases, it took between 2 weeks and 10 months after surgery to recover respiratory function.5–11 A continuing recovery and rehabilitation program may be required because some patients need more time to regain their respiratory function.

Lessons

Although a single case report limits the significance of the observations, the lesson is that cervical canal and foraminal stenosis may cause hemidiaphragmatic paralysis due to radiculopathy-induced phrenic nerve palsy. Laminoplasty and posterior foraminotomy can restore respiratory function by decompressing the ventral horn of the spinal cord and spinal nerve root.

Acknowledgments

We would like to thank Editage for English language editing.

References

Disclosures

The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Author Contributions

Conception and design: Hayashi, Kitamura. Acquisition of data: Hayashi, Kitamura, Ishibashi. Analysis and interpretation of data: Hayashi, Kitamura. Drafting the article: Hayashi, Kitamura, Toda. Critically revising the article: Hayashi, Kitamura, Toda. Reviewed submitted version of manuscript: Hayashi, Toda. Approved the final version of the manuscript on behalf of all authors: Hayashi. Study supervision: Hayashi.

Supplemental Information

Previous Presentations
This case was presented at the 36th Annual Meeting of the Neuropsychiatric Society of Japan, Kyoto, Japan, April 3, 2021.

Correspondence

Hideki Hayashi: Tazuke Kofukai Medical Research Institute and Kitano Hospital, Osaka, Japan. nrsgrnhd@gmail.com.

Unauthenticated | Downloaded 10/10/22 10:33 PM UTC