Browse

You are looking at 71 - 80 of 33,664 items

Restricted access

Chao Li, Shuo Wang, Jiun-Lin Yan, Turid Torheim, Natalie R. Boonzaier, Rohitashwa Sinha, Tomasz Matys, Florian Markowetz and Stephen J. Price

OBJECTIVE

The objective of this study was to characterize the abnormalities revealed by diffusion tensor imaging (DTI) using MR spectroscopy (MRS) and perfusion imaging, and to evaluate the prognostic value of a proposed quantitative measure of tumor invasiveness by combining contrast-enhancing (CE) and DTI abnormalities in patients with glioblastoma.

METHODS

Eighty-four patients with glioblastoma were recruited preoperatively. DTI was decomposed into isotropic (p) and anisotropic (q) components. The relative cerebral blood volume (rCBV) was calculated from the dynamic susceptibility contrast imaging. Values of N-acetylaspartate, myoinositol, choline (Cho), lactate (Lac), and glutamate + glutamine (Glx) were measured from multivoxel MRS and normalized as ratios to creatine (Cr). Tumor regions of interest (ROIs) were manually segmented from the CE T1-weighted (CE-ROI) and DTI-q (q-ROI) maps. Perfusion and metabolic characteristics of these ROIs were measured and compared. The relative invasiveness coefficient (RIC) was calculated as a ratio of the characteristic radii of CE-ROI and q-ROI. The prognostic significance of RIC was tested using Kaplan-Meier and multivariate Cox regression analyses.

RESULTS

The Cho/Cr, Lac/Cr, and Glx/Cr in q-ROI were significantly higher than CE-ROI (p = 0.004, p = 0.005, and p = 0.007, respectively). CE-ROI had significantly higher rCBV values than q-ROI (p < 0.001). A higher RIC was associated with worse survival in a multivariate overall survival (OS) model (hazard ratio [HR] 1.40, 95% confidence interval [CI] 1.06–1.85, p = 0.016) and progression-free survival (PFS) model (HR 1.55, 95% CI 1.16–2.07, p = 0.003). An RIC cutoff value of 0.89 significantly predicted shorter OS (median 384 vs 605 days, p = 0.002) and PFS (median 244 vs 406 days, p = 0.001).

CONCLUSIONS

DTI-q abnormalities displayed higher tumor load and hypoxic signatures compared with CE abnormalities, whereas CE regions potentially represented the tumor proliferation edge. Integrating the extents of invasion visualized by DTI-q and CE images into clinical practice may lead to improved treatment efficacy.

Restricted access

Ahmed Mansour, Toshiki Endo, Tomoo Inoue, Kenichi Sato, Hidenori Endo, Miki Fujimura and Teiji Tominaga

The authors report the case of a 78-year-old man with a craniocervical junction epidural arteriovenous fistula who presented with subarachnoid hemorrhage from a ruptured anterior spinal artery (ASA) aneurysm. Because endovascular embolization was difficult, a posterolateral approach was chosen and a novel endoscopic fluorescence imaging system was utilized to clip the aneurysm. The fluorescence imaging system provided clear and magnified views of the ventral spinal cord simultaneously with the endoscope-integrated indocyanine green videoangiography, which helped safely obliterate the ASA aneurysm. With the aid of this novel imaging system, surgeons can appreciate and manipulate complex vascular pathologies of the ventral spinal cord through a posterolateral approach, even when the lesion is closely related to the ASA.

Restricted access

Dil V. Patel, Joon S. Yoo, Brittany E. Haws, Benjamin Khechen, Eric H. Lamoutte, Sailee S. Karmarkar and Kern Singh

OBJECTIVE

In a large, consecutive series of patients treated with anterior cervical discectomy and fusion (ACDF) performed by a single surgeon, the authors compared the clinical and surgical outcomes of patients who underwent ACDF in an inpatient versus outpatient setting.

METHODS

Patients undergoing primary ACDF were retrospectively reviewed and stratified by surgical setting: hospital or ambulatory surgical center (ASC). Data regarding perioperative characteristics, including hospital length of stay and complications, were collected. Neck Disability Index (NDI) and visual analog scale (VAS) scores were used to analyze neck and arm pain in the preoperative period and at 6 weeks, 3 months, 6 months, and 12 months postoperatively. Postoperative outcomes were compared using chi-square analysis and linear regression.

RESULTS

The study included 272 consecutive patients undergoing a primary ACDF, of whom 172 patients underwent surgery at a hospital and 100 patients underwent surgery at an ASC. Patients undergoing ACDF in the hospital setting were older, more likely to be diabetic, and had a higher comorbidity burden. Patients receiving treatment in the ASC were more likely to carry Workers’ Compensation insurance. Patients in the hospital cohort were more likely to have multilevel procedures, had greater blood loss, and experienced a longer length of stay. In the hospital cohort, 48.3% of patients were discharged within 24 hours, while 43.0% were discharged between 24 and 48 hours after admission. Both cohorts had similar VAS pain scores on postoperative day (POD) 0; however, the hospital cohort consumed more narcotics on POD 0. One patient in the ASC cohort had a pretracheal hematoma that was evacuated immediately in the same surgical center. There were 8 cases of dysphagia in the hospital cohort and 3 cases in the ASC cohort, all of which resolved before the 6-month follow-up. Both cohorts demonstrated similar NDI and VAS neck and arm pain scores preoperatively and at every postoperative time point.

CONCLUSIONS

Although patients undergoing ACDF in the hospital setting were older, had a greater comorbidity burden, and underwent surgery on more levels than patients undergoing ACDF at an outpatient center, this study demonstrated comparable surgical and clinical outcomes for both patient groups. Based on the results of this single surgeon’s experience, 1- to 2-level ACDFs may be performed successfully in the outpatient setting in appropriately selected patient populations.

Restricted access

Chao-Hung Kuo, Timothy M. Blakely, Jeremiah D. Wander, Devapratim Sarma, Jing Wu, Kaitlyn Casimo, Kurt E. Weaver and Jeffrey G. Ojemann

OBJECTIVE

The activation of the sensorimotor cortex as measured by electrocorticographic (ECoG) signals has been correlated with contralateral hand movements in humans, as precisely as the level of individual digits. However, the relationship between individual and multiple synergistic finger movements and the neural signal as detected by ECoG has not been fully explored. The authors used intraoperative high-resolution micro-ECoG (µECoG) on the sensorimotor cortex to link neural signals to finger movements across several context-specific motor tasks.

METHODS

Three neurosurgical patients with cortical lesions over eloquent regions participated. During awake craniotomy, a sensorimotor cortex area of hand movement was localized by high-frequency responses measured by an 8 × 8 µECoG grid of 3-mm interelectrode spacing. Patients performed a flexion movement of the thumb or index finger, or a pinch movement of both, based on a visual cue. High-gamma (HG; 70–230 Hz) filtered µECoG was used to identify dominant electrodes associated with thumb and index movement. Hand movements were recorded by a dataglove simultaneously with µECoG recording.

RESULTS

In all 3 patients, the electrodes controlling thumb and index finger movements were identifiable approximately 3–6-mm apart by the HG-filtered µECoG signal. For HG power of cortical activation measured with µECoG, the thumb and index signals in the pinch movement were similar to those observed during thumb-only and index-only movement, respectively (all p > 0.05). Index finger movements, measured by the dataglove joint angles, were similar in both the index-only and pinch movements (p > 0.05). However, despite similar activation across the conditions, markedly decreased thumb movement was observed in pinch relative to independent thumb-only movement (all p < 0.05).

CONCLUSIONS

HG-filtered µECoG signals effectively identify dominant regions associated with thumb and index finger movement. For pinch, the µECoG signal comprises a combination of the signals from individual thumb and index movements. However, while the relationship between the index finger joint angle and HG-filtered signal remains consistent between conditions, there is not a fixed relationship for thumb movement. Although the HG-filtered µECoG signal is similar in both thumb-only and pinch conditions, the actual thumb movement is markedly smaller in the pinch condition than in the thumb-only condition. This implies a nonlinear relationship between the cortical signal and the motor output for some, but importantly not all, movement types. This analysis provides insight into the tuning of the motor cortex toward specific types of motor behaviors.

Restricted access

Vivien Chan, Alessandro Marro, Jeremy Rempel and Andrew Nataraj

OBJECTIVE

In this study the authors sought to compare the proportion of patients with lumbar spondylolisthesis detected to have dynamic instability based on flexion and extension standing radiographs versus neutral standing radiograph and supine MRI.

METHODS

This was a single-center retrospective study of all consecutive adult patients diagnosed with spondylolisthesis from January 1, 2013, to July 31, 2018, for whom the required imaging was available for analysis. Two independent observers measured the amount of translation, in millimeters, on supine MRI and flexion, extension, and neutral standing radiographs using the Meyerding technique. Interobserver and intraobserver correlation coefficients were calculated. The difference in amount of translation was compared between 1) flexion and extension standing radiographs and 2) neutral standing radiograph and supine MRI. The proportion of patients with dynamic instability, defined as a ≥ 3 mm difference in the amount of translation measured on different imaging modalities, was reported. Correlation between amount of dynamic instability and change in back pain and leg pain 1 year after decompression and instrumented fusion was analyzed using multivariate regression analysis.

RESULTS

Fifty-six patients were included in this study. The mean patient age was 57.1 years, and 55.4% of patients were female. The most commonly affected levels were L4–5 (60.7%) and L5–S1 (30.4%). The average translations measured on flexion standing radiograph, extension standing radiograph, neutral standing radiograph, and supine MRI were 12.5 mm, 11.9 mm, 10.1 mm, and 7.2 mm, respectively. The average difference between flexion and extension standing radiographs was 0.58 mm, with dynamic instability detected in 21.4% of patients. The average difference between neutral standing radiograph and supine MRI was 3.77 mm, with dynamic instability detected in 60.7% of patients. The intraobserver correlation coefficient ranged from 0.77 to 0.90 mm. The interobserver correlation coefficient ranged from 0.79 to 0.86 mm. In 44 patients who underwent decompression and instrumented fusion, the amount of dynamic instability between standing and supine imaging was significantly correlated with change in back pain (p < 0.001) and leg pain (p = 0.05) at the 12-month postoperative follow-up. There was no correlation between amount of dynamic instability between flexion and extension standing radiographs and postoperative back pain and leg pain.

CONCLUSIONS

More patients were found to have dynamic instability by using neutral standing radiograph and supine MRI. In patients who received decompression and instrumented fusion, there was a significant correlation between dynamic instability on neutral standing radiograph and supine MRI and change in back pain and leg pain at 12 months.

Restricted access

Karim Mithani, Ying Meng, David Pinilla, Nova Thani, Kayee Tung, Richard Leung and Howard J. Ginsberg

A 52-year-old man with a 10-year history of treatment-resistant asthma presented with repeated exacerbations over the course of 10 months. His symptoms were not responsive to salbutamol or inhaled corticosteroid agents, and he developed avascular necrosis of his left hip as a result of prolonged steroid therapy. Physical examination and radiography revealed signs consistent with diffuse idiopathic skeletal hyperostosis (DISH), including a C7–T1 osteophyte causing severe tracheal compression. The patient underwent C6–T1 anterior discectomy and fusion, and the compressive osteophyte was removed, which completely resolved his “asthma.” Postoperative pulmonary function tests showed normalization of his FEV1/FVC ratio, and there was no airway reactivity on methacholine challenge. DISH is a systemic, noninflammatory condition characterized by ossification of spinal entheses, and it can present with respiratory disturbances due to airway compression by anterior cervical osteophytes. The authors present, to the best of their knowledge, the first documented case of asthma as a presentation of DISH.

Restricted access

Eric Suero Molina, Christian Ewelt, Nils Warneke, Michael Schwake, Michael Müther, Stephanie Schipmann and Walter Stummer

OBJECTIVE

Recent efforts to improve visualization of 5-aminolevulinic acid (5-ALA)–induced protoporphyrin IX (PPIX) fluorescence resulted in a dual-labeling technique, combining it with fluorescein sodium in a prototype setup. Fluorescein identifies regions with blood-brain barrier breakdown in gliomas. However, normally perfused and edematous brain fluoresces unselectively, with strong background enhancement. The aim of this study was to test the feasibility of a novel, integrated filter combination using porphyrins for selective tumor identification and fluorescein for background enhancement.

METHODS

A microscope with a novel built-in filter system (YB 475) for visualizing both fluorescein and 5-ALA–induced porphyrins was used. Resection limits were identified with the conventional BLUE 400 filter system. Six patients harboring contrast ring-enhancing lesions were analyzed.

RESULTS

The complete surgical field could now be illuminated. Fluorescein was helpful for improving background visualization, and enhancing dura, edematous tissue, and cortex. Overlapping regions with both fluorophores harbored merged orange fluorescence. PPIX fluorescence was better visualized, even in areas beyond a normal working distance of approximately 25 cm, where the BLUE 400 filters recognized no or weak fluorescence.

CONCLUSIONS

The novel filter system improved general tissue brightness and background visualization, enhancing fluorescence-guided tumor resection. Furthermore, it appears promising from a scientific perspective, enabling the simultaneous and direct observation of areas with blood-brain barrier breakdown and PPIX fluorescence.

Restricted access

Santiago Cepeda, Ana María Castaño-León, Pablo M. Munarriz, Igor Paredes, Irene Panero, Carla Eiriz, Pedro A. Gómez and Alfonso Lagares

OBJECTIVE

Traumatic intracerebral hemorrhage (TICH) represents approximately 13%–48% of the lesions after a traumatic brain injury (TBI), and hemorrhagic progression (HP) occurs in 38%–63% of cases. In previous studies, decompressive craniectomy (DC) has been characterized as a risk factor in the HP of TICH; however, few studies have focused exclusively on this relationship. The object of the present study was to analyze the relationship between DC and the growth of TICH and to reveal any correlation with the size of the craniectomy, degree of cerebral parenchymal herniation (CPH), or volumetric expansion of the TICH.

METHODS

The authors retrospectively analyzed the records of 497 adult patients who had been consecutively admitted after suffering a severe or moderate closed TBI. An inclusion criterion was presentation with one or more TICHs on the initial or control CT. Demographic, clinical, radiological, and treatment variables were assessed for associations.

RESULTS

Two hundred three patients presenting with 401 individual TICHs met the selection criteria. TICH growth was observed in 281 cases (70.1%). Eighty-two cases (20.4%) underwent craniectomy without TICH evacuation. In the craniectomy group, HP was observed in 71 cases (86.6%); in the noncraniectomy group (319 cases), HP occurred in 210 cases (65.8%). The difference in the incidence of HP between the two groups was statistically significant (OR 3.41, p < 0.01). The mean area of the craniectomy was 104.94 ± 27.5 cm2, and the mean CPH distance through the craniectomy was 17.85 ± 11.1 mm. The mean increase in the TICH volume was greater in the groups with a craniectomy area > 115 cm2 and CPH > 25 mm (16.12 and 14.47 cm3, respectively, p = 0.01 and 0.02). After calculating the propensity score (PS), the authors followed three statistical methods—matching, stratification, and inverse probability treatment weighting (IPTW)—thereby obtaining an adequate balance of the covariates. A statistically significant relationship was found between HP and craniectomy (OR 2.77, p = 0.004). This correlation was confirmed with the three methodologies based on the PS with odds greater than 2.

CONCLUSIONS

DC is a risk factor for the growth of TICH, and there is also an association between the size of the DC and the magnitude of the volume increase in the TICH.

Restricted access

Philip Cheng, Li Ma, Sonali Shaligram, Espen J. Walker, Shun-Tai Yang, Chaoliang Tang, Wan Zhu, Lei Zhan, Qiang Li, Xiaonan Zhu, Michael T. Lawton and Hua Su

OBJECTIVE

A high level of vascular endothelial growth factor (VEGF) has been implicated in brain arteriovenous malformation (bAVM) bleeding and rupture. However, direct evidence is missing. In this study the authors used a mouse bAVM model to test the hypothesis that elevation of focal VEGF levels in bAVMs exacerbates the severity of bAVM hemorrhage.

METHODS

Brain AVMs were induced in adult mice in which activin receptor–like kinase 1 (Alk1, a gene that causes AVM) gene exons 4–6 were floxed by intrabasal ganglia injection of an adenoviral vector expressing Cre recombinase to induce Alk1 mutation and an adeno-associated viral vector expressing human VEGF (AAV-VEGF) to induce angiogenesis. Two doses of AAV-VEGF (5 × 109 [high] or 2 × 109 [low]) viral genomes were used. In addition, the common carotid artery and external jugular vein were anastomosed in a group of mice treated with low-dose AAV-VEGF 6 weeks after the model induction to induce cerebral venous hypertension (VH), because VH increases the VEGF level in the brain. Brain samples were collected 8 weeks after the model induction. Hemorrhages in the bAVM lesions were quantified on brain sections stained with Prussian blue, which detects iron deposition. VEGF levels were quantified in bAVM tissue by enzyme-linked immunosorbent assay.

RESULTS

Compared to mice injected with a low dose of AAV-VEGF, the mice injected with a high dose had higher levels of VEGF (p = 0.003) and larger Prussian blue–positive areas in the bAVM lesion at 8 or 9 weeks after model induction (p = 0.002). VH increased bAVM hemorrhage in the low-dose AAV-VEGF group. The overall mortality in the high-dose AAV-VEGF group was 26.7%, whereas no mouse died in the low-dose AAV-VEGF group without VH. In contrast, VH caused a mortality of 50% in the low-dose AAV-VEGF group.

CONCLUSIONS

Using mouse bAVM models, the authors provided direct evidence that elevation of the VEGF level increases bAVM hemorrhage and mouse mortality.

Restricted access

Anne E. Carolus, Marcel Lenz, Martin Hofmann, Hubert Welp, Kirsten Schmieder and Christopher Brenke

OBJECTIVE

Because of their complex topography, long courses, and small diameters, peripheral nerves are challenging structures for radiological diagnostics. However, imaging techniques in the area of peripheral nerve diseases have undergone unexpected development in recent decades. They include MRI and high-resolution sonography (HRS). Yet none of those imaging techniques reaches a resolution comparable to that of histological sections. Fascicles are the smallest discernable structure. Optical coherence tomography (OCT) is the first imaging technique that is able to depict a nerve’s ultrastructure at micrometer resolution. In the current study, the authors present an in vivo assessment of human peripheral nerves using OCT.

METHODS

OCT measurement was performed in 34 patients with different peripheral nerve pathologies, i.e., nerve compression syndromes. The nerves were examined during surgery after their exposure. Only the sural nerve was twice examined ex vivo. The Thorlabs OCT systems Callisto and Ganymede were used. For intraoperative use, a hand probe was covered with a sterile foil. Different postprocessing imaging techniques were applied and evaluated. In order to highlight certain structures, five texture parameters based on gray-level co-occurrence matrices were calculated according to Haralick.

RESULTS

The intraoperative use of OCT is easy and intuitive. Image artifacts are mainly caused by motion and the sterile foil. If the artifacts are kept at a low level, the hyporeflecting bundles of nerve fascicles and their inner parts can be displayed. In the Haralick evaluation, the second angular moment is most suitable to depict the connective tissue.

CONCLUSIONS

OCT is a new imaging technique that has shown promise in peripheral nerve surgery for particular questions. Its resolution exceeds that provided by recent radiological possibilities such as MRI and HRS. Since its field of view is relatively small, faster acquisition times would be highly desirable and have already been demonstrated by other groups. Currently, the method resembles an optical biopsy and can be a supplement to intraoperative sonography, giving high-resolution insight into a suspect area that has been located by sonography in advance.