Browse

You are looking at 11 - 20 of 32,775 items

Restricted access

Byung Sup Kim, Yuil Kim, Doo-Sik Kong, Do-Hyun Nam, Jung-Il Lee, Yeon-Lim Suh and Ho Jun Seol

OBJECTIVE

The authors conducted this retrospective study to investigate the clinical outcomes of intracranial solitary fibrous tumor (SFT) and hemangiopericytoma (HPC), defined according to the 2016 WHO classification of central nervous system (CNS) tumors.

METHODS

Histopathologically proven intracranial SFT and HPC cases treated in the period from June 1996 to September 2014 were retrospectively reviewed and analyzed. Two neuropathologists reviewed pathological slides and regraded the specimens according to the 2016 WHO classification. Factors associated with progression-free survival (PFS) and overall survival (OS) were statistically evaluated with uni- and multivariate analyses.

RESULTS

The records of 47 patients—10 with SFT, 33 with HPC, and 4 with anaplastic HPC—were reviewed. A malignant transition from conventional SFT to WHO grade III SFT/HPC was observed in 2 cases, and 13 HPC cases were assigned grade III SFT/HPC. Mean and median follow-ups were 114.6 and 94.7 months, respectively (range 7.1–366.7 months). Gross-total resection (GTR) was significantly associated with longer PFS and OS (p = 0.012 for both), and adjuvant radiation therapy versus no such therapy led to significantly longer PFS (p = 0.018). Extracranial metastases to the liver, bone, lung, spine, and kidney occurred in 10 patients (21.3%). Grade III SFT/HPC was strongly correlated with the development of extracranial metastases (p = 0.031).

CONCLUSIONS

The 2016 WHO classification of CNS tumors reflected the different types of pathological malignant progression and clinical outcomes better than prior classifications. Gross-total resection should be the primary treatment goal in patients with SFT/HPC, regardless of the pathological grade, and radiation can be administered as adjuvant therapy for patients with SFT/HPC that shows an aggressive phenotype or that is not treated with GTR.

Full access

Hitoshi Aiyama, Masaaki Yamamoto, Takuya Kawabe, Shinya Watanabe, Takao Koiso, Yasunori Sato, Yoshinori Higuchi, Eiichi Ishikawa, Tetsuya Yamamoto, Akira Matsumura and Hidetoshi Kasuya

OBJECTIVE

Although the conformity index (CI) and the gradient index (GI), which were proposed by Paddick and colleagues, are both logically considered to correlate with good posttreatment results after stereotactic radiosurgery (SRS), this hypothesis has not been confirmed clinically. The authors’ aim was to reappraise whether high CI values correlate with reduced tumor progression rates, and whether low GI values correlate with reduced complication incidences.

METHODS

This was an institutional review board–approved, retrospective cohort study conducted using a prospectively accumulated database including 3271 patients who underwent Gamma Knife SRS for brain metastases (BMs) during the 1998–2016 period. Among the 3271 patients, 925 with a single BM at the time of SRS (335 women and 590 men, mean age 66 [range 24–93] years) were studied. The mean/median CIs were 0.62/0.66 (interquartile range [IQR] 0.53–0.74, range 0.08–0.88) and the mean/median GIs were 3.20/3.09 (IQR 2.83–3.39, range 2.27–11.4).

RESULTS

SRS-related complications occurred in 38 patients (4.1%), with a median post-SRS interval of 11.5 (IQR 6.0–25.8, maximum 118.0) months. Cumulative incidences of post-SRS complications determined by a competing risk analysis were 2.2%, 3.2%, 3.6%, 3.8%, and 3.9% at the 12th, 24th, 36th, 48th, and 60th post-SRS month, respectively. Multivariable analyses showed that only two clinical factors (i.e., peripheral doses and brain volume receiving ≥ 12 Gy) correlated with complication rates. However, neither CIs nor GIs impacted the incidences of complications. Among the 925 patients, post-SRS MRI was performed at least once in 716 of them, who were thus eligible for local progression evaluation. Among these 716 patients, local progression was confirmed in 96 (13.4%), with a median post-SRS interval of 10.8 (IQR 6.7–19.5, maximum 59.8) months. Cumulative incidences of local progression determined by a competing risk analysis were 7.7%, 12.6%, 14.2%, 14.8%, and 15.3% at the 12th, 24th, 36th, 48th, and 60th post-SRS month, respectively. Multivariable analyses showed neurological symptoms, extracerebral metastases, repeat SRS, and CIs to correlate with incidences of local progression, whereas GIs had no impact on local tumor progression. Particularly, cumulative incidences of local progression were significantly lower in patients with CIs < 0.65 than in those with CIs ≥ 0.65 (adjusted hazard ratio 1.870, 95% confidence interval 1.299–2.843; p = 0.0034).

CONCLUSIONS

To the authors’ knowledge, this is the first analysis to focus on the clinical significance of CI and GI based on a large series of patients with BM. Contrary to the majority opinion that dose planning with higher CI and lower GI results in good post-SRS outcomes (i.e., low local progression rates and minimal complications), this study clearly showed that the lower the CIs were, the lower the local progression rates were, and that the GI did not impact complication rates.

Restricted access

Kevin Diao, Shelly X. Bian, David M. Routman, Cheng Yu, Paul E. Kim, Naveed A. Wagle, Michael K. Wong, Gabriel Zada and Eric L. Chang

OBJECTIVE

Tumor and edema volume changes of brain metastases after stereotactic radiosurgery (SRS) and ipilimumab are not well described, and there is concern regarding the safety of combination treatment. The authors evaluated tumor, edema, and adverse radiation-induced changes after SRS with and without ipilimumab and identified associated risk factors.

METHODS

This single-institution retrospective study included 72 patients with melanoma brain metastases treated consecutively with upfront SRS from 2006 to 2015. Concurrent ipilimumab was defined as ipilimumab treatment within 4 weeks of SRS. At baseline and during each follow-up, tumor and edema were measured in 3 orthogonal planes. The (length × width × height/2) formula was used to estimate tumor and edema volumes and was validated in the present study for estimation of edema volume. Tumor and edema volume changes from baseline were compared using the Kruskal-Wallis test. Local failure, lesion hemorrhage, and treatment-related imaging changes (TRICs) were analyzed with the Cox proportional hazards model.

RESULTS

Of 310 analyzed lesions, 91 were not treated with ipilimumab, 59 were treated with concurrent ipilimumab, and 160 were treated with nonconcurrent ipilimumab. Of 106 randomly selected lesions with measurable peritumoral edema, the mean edema volume by manual contouring was 7.45 cm3 and the mean volume by (length × width × height)/2 formula estimation was 7.79 cm3 with R2 = 0.99 and slope of 1.08 on line of best fit. At 6 months after SRS, the ipilimumab groups had greater tumor (p = 0.001) and edema (p = 0.005) volume reduction than the control group. The concurrent ipilimumab group had the highest rate of lesion response and lowest rate of lesion progression (p = 0.002). Within the concurrent ipilimumab group, SRS dose ≥ 20 Gy was associated with significantly greater median tumor volume reduction at 3 months (p = 0.01) and 6 months (p = 0.02). The concurrent ipilimumab group also had the highest rate of lesion hemorrhage (p = 0.01). Any ipilimumab was associated with higher incidence of symptomatic TRICs (p = 0.005). The overall incidence of pathologically confirmed radiation necrosis (RN) was 2%. In multivariate analysis, tumor and edema response at 3 months were the strongest predictors of local failure (HR 0.131 and HR 0.125) and lesion hemorrhage (HR 0.225 and HR 0.262). Tumor and edema response at 1.5 months were the strongest predictors of TRICs (HR 0.144 and HR 0.297).

CONCLUSIONS

The addition of ipilimumab improved tumor and edema volume reduction but was associated with a higher incidence of lesion hemorrhage and symptomatic TRICs. There may be a radiation dose-response relationship between SRS and ipilimumab when administered concurrently. Early tumor and edema response were excellent predictors of subsequent local failure, lesion hemorrhage, and TRICs. The incidence of pathologically proven RN was low, supporting the relative safety of ipilimumab in radiosurgery treatment.

Full access

Rachel Lazarus, Katherine Helmick, Saafan Malik, Emma Gregory, Yll Agimi and Donald Marion

Over the past 8 years, advances in the US Military Health System (MHS) have led to extensive changes in the way combat casualty care is provided to deployed service members with a traumatic brain injury (TBI). Changes include the application of cutting-edge Clinical Practice Guidelines, use of pioneering technologies, and advances in evacuation procedures. Compared with previous engagements, current operations occur on a much smaller scale, and more frequently in austere environments, such that effective medical support is increasingly challenging. In this paper, the authors describe key aspects of the current continuum of TBI care in the US military, from the point of injury through rehabilitation, with an emphasis on how emerging technologies and evidence-based Clinical Practice Guidelines assist MHS clinicians with providing the best clinical care possible in the changing battlefield.

Full access

Chris J. Neal, Kara Mandell, Ellen Tasikas, John J. Delaney, Charles A. Miller, Cody D. Schlaff and Michael K. Rosner

OBJECTIVE

Adult spinal deformity surgery is an effective way of treating pain and disability, but little research has been done to evaluate the costs associated with changes in health outcome measures. This study determined the change in quality-adjusted life years (QALYs) and the cost per QALY in patients undergoing spinal deformity surgery in the unique environment of a military healthcare system (MHS).

METHODS

Patients were enrolled between 2011 and 2017. Patients were eligible to participate if they were undergoing a thoracolumbar spinal fusion spanning more than 6 levels to treat an underlying deformity. Patients completed the 36-Item Short Form Health Survey (SF-36) prior to surgery and 6 and 12 months after surgery. The authors used paired t-tests to compare SF-36 Physical Component Summary (PCS) scores between baseline and postsurgery. To estimate the cost per QALY of complex spine surgery in this population, the authors extended the change in health-related quality of life (HRQOL) between baseline and follow-up over 5 years. Data on the cost of surgery were obtained from the MHS and include all facility and physician costs.

RESULTS

HRQOL and surgical data were available for 49 of 91 eligible patients. Thirty-one patients met additional criteria allowing for cost-effectiveness analysis. Over 12 months, patients demonstrated significant improvement (p < 0.01) in SF-36 PCS scores. A majority of patients met the minimum clinically important difference (MCID; 83.7%) and substantive clinical benefit threshold (SCBT; 83.7%). The average change in QALY was an increase of 0.08. Extended across 5 years, including the 3.5% discounting per year, study participants increased their QALYs by 0.39, resulting in an average cost per QALY of $181,649.20. Nineteen percent of patients met the < $100,000/QALY threshold with half of the patients meeting the < $100,000/QALY mark by 10 years. A sensitivity analysis showed that patients who scored below 60 on their preoperative SF-36 PCS had an average increase in QALYs of 0.10 per year or 0.47 over 5 years.

CONCLUSIONS

With a 5-year extended analysis, patients who receive spinal deformity surgery in the MHS increased their QALYs by 0.39, with 19% of patients meeting the $100,000/QALY threshold. The majority of patients met the threshold for MCID and SCBT at 1 year postoperatively. Consideration of preoperative functional status (SF-36 PCS score < 60) may be an important factor in determining which patients benefit the most from spinal deformity surgery.

Full access

Isabel Charlotte Hostettler, Carl Muroi, Johannes Konstantin Richter, Josef Schmid, Marian Christoph Neidert, Martin Seule, Oliver Boss, Athina Pangalu, Menno Robbert Germans and Emanuela Keller

OBJECTIVE

The aim of this study was to create prediction models for outcome parameters by decision tree analysis based on clinical and laboratory data in patients with aneurysmal subarachnoid hemorrhage (aSAH).

METHODS

The database consisted of clinical and laboratory parameters of 548 patients with aSAH who were admitted to the Neurocritical Care Unit, University Hospital Zurich. To examine the model performance, the cohort was randomly divided into a derivation cohort (60% [n = 329]; training data set) and a validation cohort (40% [n = 219]; test data set). The classification and regression tree prediction algorithm was applied to predict death, functional outcome, and ventriculoperitoneal (VP) shunt dependency. Chi-square automatic interaction detection was applied to predict delayed cerebral infarction on days 1, 3, and 7.

RESULTS

The overall mortality was 18.4%. The accuracy of the decision tree models was good for survival on day 1 and favorable functional outcome at all time points, with a difference between the training and test data sets of < 5%. Prediction accuracy for survival on day 1 was 75.2%. The most important differentiating factor was the interleukin-6 (IL-6) level on day 1. Favorable functional outcome, defined as Glasgow Outcome Scale scores of 4 and 5, was observed in 68.6% of patients. Favorable functional outcome at all time points had a prediction accuracy of 71.1% in the training data set, with procalcitonin on day 1 being the most important differentiating factor at all time points. A total of 148 patients (27%) developed VP shunt dependency. The most important differentiating factor was hyperglycemia on admission.

CONCLUSIONS

The multiple variable analysis capability of decision trees enables exploration of dependent variables in the context of multiple changing influences over the course of an illness. The decision tree currently generated increases awareness of the early systemic stress response, which is seemingly pertinent for prognostication.

Restricted access

Geoffrey P. Colby, Matthew T. Bender, Li-Mei Lin, Narlin Beaty, Justin M. Caplan, Bowen Jiang, Erick M. Westbroek, Bijan Varjavand, Jessica K. Campos, Judy Huang, Rafael J. Tamargo and Alexander L. Coon

OBJECTIVE

The second-generation Pipeline embolization device (PED), Flex, has several design upgrades, including improved opening and the ability to be resheathed, in comparison with the original device (PED classic). The authors hypothesized that Flex is associated with a lower rate of major complications.

METHODS

A prospective, IRB-approved, single-institution database was analyzed for all patients with anterior circulation aneurysms treated by flow diversion. The PED classic was used from August 2011 to January 2015, and the Pipeline Flex has been used since February 2015.

RESULTS

A total of 568 PED procedures (252 classic and 316 Flex) were performed for anterior circulation aneurysms. The average aneurysm size was 6.8 mm. Patients undergoing treatment with the Flex device had smaller aneurysms (p = 0.006) and were more likely to have undergone previous treatments (p = 0.001). Most aneurysms originated along the internal carotid artery (89% classic and 75% Flex) but there were more anterior cerebral artery (18%) and middle cerebral artery (7%) deployments with Flex (p = 0.001). Procedural success was achieved in 96% of classic and 98% of Flex cases (p = 0.078). Major morbidity or death occurred in 3.5% of cases overall: 5.6% of classic cases, and 1.9% of Flex cases (p = 0.019). On multivariate logistic regression, predictors of major complications were in situ thrombosis (OR 4.3, p = 0.006), classic as opposed to Flex device (OR 3.7, p = 0.008), and device deployment in the anterior cerebral artery or middle cerebral artery as opposed to the internal carotid artery (OR 3.5, p = 0.034).

CONCLUSIONS

Flow diversion of anterior circulation cerebral aneurysms is associated with an overall low rate of major complications. The complication rate is significantly lower since the introduction of the second-generation PED (Flex).

Restricted access

Irene Kim, Betsy Hopson, Inmaculada Aban, Elias B. Rizk, Mark S. Dias, Robin Bowman, Laurie L. Ackerman, Michael D. Partington, Heidi Castillo, Jonathan Castillo, Paula R. Peterson, Jeffrey P. Blount and Brandon G. Rocque

OBJECTIVE

The purpose of this study was to determine the rate of decompression for Chiari malformation type II in individuals with myelomeningocele in the National Spina Bifida Patient Registry (NSBPR). In addition, the authors explored the variation in rates of Chiari II decompression across NSBPR institutions, examined the relationship between Chiari II decompression and functional lesion level of the myelomeningocele, age, and need for tracheostomy, and they evaluated for temporal trends in rates of Chiari II decompression.

METHODS

The authors queried the NSBPR to identify all individuals with myelomeningocele between 2009 and 2015. Among these patients, they identified individuals who had undergone at least 1 Chiari II decompression as well as those who had undergone tracheostomy. For each participating NSBPR institution, the authors calculated the proportion of patients enrolled at that site who underwent Chiari II decompression. Logistic regression was performed to analyze the relationship between Chiari II decompression, functional lesion level, age at decompression, and history of tracheostomy.

RESULTS

Of 4448 individuals with myelomeningocele identified from 26 institutions, 407 (9.15%) had undergone at least 1 Chiari II decompression. Fifty-one patients had undergone tracheostomy. Logistic regression demonstrated a statistically significant relationship between Chiari II decompression and functional lesion level of the myelomeningocele, with a more rostral lesion level associated with a higher likelihood of posterior fossa decompression. Similarly, children born before 2005 and those with history of tracheostomy had a significantly higher likelihood of Chiari II decompression. There was no association between functional lesion level and need for tracheostomy. However, among those children who underwent Chiari II decompression, the likelihood of also undergoing tracheostomy increased significantly with younger age at decompression.

CONCLUSIONS

The rate of Chiari II decompression in patients with myelomeningocele in the NSBPR is consistent with that in previously published literature. There is a significant relationship between Chiari II decompression and functional lesion level of the myelomeningocele, which has not previously been reported. Younger children who undergo Chiari II decompression are more likely to have undergone tracheostomy. There appears to be a shift away from Chiari II decompression, as children born before 2005 were more likely to undergo Chiari II decompression than those born in 2005 or later.

Restricted access

Caio M. Matias, Leonardo A. Frizon, Sean J. Nagel, Darlene A. Lobel and André G. Machado

OBJECTIVE

The authors’ aim in this study was to evaluate placement accuracy and clinical outcomes in patients who underwent implantation of deep brain stimulation devices with the aid of frame-based stereotaxy and intraoperative MRI after induction of general anesthesia.

METHODS

Thirty-three patients with movement disorders (27 with Parkinson’s disease) underwent implantation of unilateral or bilateral deep brain stimulation systems (64 leads total). All patients underwent the implantation procedure with standard frame-based techniques under general anesthesia and without microelectrode recording. MR images were acquired immediately after the procedure and fused to the preoperative plan to verify accuracy. To evaluate clinical outcome, different scales were used to assess quality of life (EQ-5D), activities of daily living (Unified Parkinson’s Disease Rating Scale [UPDRS] part II), and motor function (UPDRS part III during off- and on-medication and off- and on-stimulation states). Accuracy was assessed by comparing the coordinates (x, y, and z) from the preoperative plan and coordinates from the tip of the lead on intraoperative MRI and postoperative CT scans.

RESULTS

The EQ-5D score improved or remained stable in 71% of the patients. When in the off-medication/on-stimulation state, all patients reported significant improvement in UPDRS III score at the last follow-up (p < 0.001), with a reduction of 25.2 points (46.3%) (SD 14.7 points and 23.5%, respectively). There was improvement or stability in the UPDRS II scores for 68% of the Parkinson’s patients. For 2 patients, the stereotactic error was deemed significant based on intraoperative MRI findings. In these patients, the lead was removed and replaced after correcting for the error during the same procedure. Postoperative lead revision was not necessary in any of the patients. Based on findings from the last intraoperative MRI study, the mean difference between the tip of the electrode and the planned target was 0.82 mm (SD 0.5 mm, p = 0.006) for the x-axis, 0.67 mm (SD 0.5 mm, p < 0.001) for the y-axis, and 0.78 mm (SD 0.7 mm, p = 0.008) for the z-axis. On average, the euclidian distance was 1.52 mm (SD 0.6 mm). In patients who underwent bilateral implantation, accuracy was further evaluated comparing the first implanted side and the second implanted side. There was a significant mediolateral (x-axis) difference (p = 0.02) in lead accuracy between the first (mean 1.02 mm, SD 0.57 mm) and the second (mean 0.66 mm, SD 0.50 mm) sides. However, no significant difference was found for the y- and z-axes (p = 0.10 and p = 0.89, respectively).

CONCLUSIONS

Frame-based DBS implantation under general anesthesia with intraoperative MRI verification of lead location is safe, accurate, precise, and effective compared with standard implantation performed using awake intraoperative physiology. More clinical trials are necessary to directly compare outcomes of each technique.

Full access

Nikita G. Alexiades, Edward S. Ahn, Jeffrey P. Blount, Douglas L. Brockmeyer, Samuel R. Browd, Gerald A. Grant, Gregory G. Heuer, Todd C. Hankinson, Bermans J. Iskandar, Andrew Jea, Mark D. Krieger, Jeffrey R. Leonard, David D. Limbrick Jr., Cormac O. Maher, Mark R. Proctor, David I. Sandberg, John C. Wellons III, Belinda Shao, Neil A. Feldstein and Richard C. E. Anderson

OBJECTIVE

Complications after complex tethered spinal cord (cTSC) surgery include infections and cerebrospinal fluid (CSF) leaks. With little empirical evidence to guide management, there is variability in the interventions undertaken to limit complications. Expert-based best practices may improve the care of patients undergoing cTSC surgery. Here, authors conducted a study to identify consensus-driven best practices.

METHODS

The Delphi method was employed to identify consensual best practices. A literature review regarding cTSC surgery together with a survey of current practices was distributed to 17 board-certified pediatric neurosurgeons. Thirty statements were then formulated and distributed to the group. Results of the second survey were discussed during an in-person meeting leading to further consensus, which was defined as ≥ 80% agreement on a 4-point Likert scale (strongly agree, agree, disagree, strongly disagree).

RESULTS

Seventeen consensus-driven best practices were identified, with all participants willing to incorporate them into their practice. There were four preoperative interventions: (1, 2) asymptomatic AND symptomatic patients should be referred to urology preoperatively, (3, 4) routine preoperative urine cultures are not necessary for asymptomatic AND symptomatic patients. There were nine intraoperative interventions: (5) patients should receive perioperative cefazolin or an equivalent alternative in the event of allergy, (6) chlorhexidine-based skin preparation is the preferred regimen, (7) saline irrigation should be used intermittently throughout the case, (8) antibiotic-containing irrigation should be used following dural closure, (9) a nonlocking running suture technique should be used for dural closure, (10) dural graft overlay should be used when unable to obtain primary dural closure, (11) an expansile dural graft should be incorporated in cases of lipomyelomeningocele in which primary dural closure does not permit free flow of CSF, (12) paraxial muscles should be closed as a layer separate from the fascia, (13) routine placement of postoperative drains is not necessary. There were three postoperative interventions: (14) postoperative antibiotics are an option and, if given, should be discontinued within 24 hours; (15) patients should remain flat for at least 24 hours postoperatively; (16) routine use of abdominal binders or other compressive devices postoperatively is not necessary. One intervention was prioritized for additional study: (17) further study of additional gram-negative perioperative coverage is needed.

CONCLUSIONS

A modified Delphi technique was used to develop consensus-driven best practices for decreasing wound complications after cTSC surgery. Further study is required to determine if implementation of these practices will lead to reduced complications. Discussion through the course of this study resulted in the initiation of a multicenter study of gram-negative surgical site infections in cTSC surgery.