Browse

You are looking at 1 - 10 of 36,161 items for

  • All content x
Clear All
Restricted access

Devon J. Ryan, Nicholas D. Stekas, Ethan W. Ayres, Mohamed A. Moawad, Eaman Balouch, Dennis Vasquez-Montes, Charla R. Fischer, Aaron J. Buckland, Thomas J. Errico, and Themistocles S. Protopsaltis

OBJECTIVE

The goal of this study was to reliably predict sagittal and coronal spinal alignment with clinical photographs by using markers placed at easily localized anatomical landmarks.

METHODS

A consecutive series of patients with adult spinal deformity were enrolled from a single center. Full-length standing radiographs were obtained at the baseline visit. Clinical photographs were taken with reflective markers placed overlying C2, S1, the greater trochanter, and each posterior-superior iliac spine. Sagittal radiographic parameters were C2 pelvic angle (CPA), T1 pelvic angle (TPA), and pelvic tilt. Coronal radiographic parameters were pelvic obliquity and T1 coronal tilt. Linear regressions were performed to evaluate the relationship between radiographic parameters and their photographic “equivalents.” The data were reanalyzed after stratifying the cohort into low–body mass index (BMI) (< 30) and high-BMI (≥ 30) groups. Interobserver and intraobserver reliability was assessed for clinical measures via intraclass correlation coefficients (ICCs).

RESULTS

A total of 38 patients were enrolled (mean age 61 years, mean BMI 27.4 kg/m2, 63% female). All regression models were significant, but sagittal parameters were more closely correlated to photographic parameters than coronal measurements. TPA and CPA had the strongest associations with their photographic equivalents (both r2 = 0.59, p < 0.001). Radiographic and clinical parameters tended to be more strongly correlated in the low-BMI group. Clinical measures of TPA and CPA had high intraobserver reliability (all ICC > 0.99, p < 0.001) and interobserver reliability (both ICC > 0.99, p < 0.001).

CONCLUSIONS

The photographic measures of spinal deformity developed in this study were highly correlated with their radiographic counterparts and had high inter- and intraobserver reliability. Clinical photography can not only reduce radiation exposure in patients with adult spinal deformity, but also be used to assess deformity when full-spine radiographs are unavailable.

Restricted access

Ignacio Jusue-Torres, Vikram C. Prabhu, and G. Alexander Jones

To better understand Walter Dandy’s intentions and the historical context of his work on hemispherectomy, the authors reviewed his original 1928 publication. Gliomas were considered incurable at that time. Presuming that the loss of motor function denoted a lack of useful tissue in that hemisphere, he pioneered radical removal of the involved cerebral hemisphere. Of the 5 patients operated on by Dandy, 1 died within 48 hours of hemorrhage because of a displaced vascular clip; 1 died of pneumonia in 2 weeks; 2 died of tumor recurrence, at 3 months and 3.5 years, respectively; and a fifth patient was lost to follow-up beyond the 2nd postoperative week.

The authors queried the Thomson Reuters Web of Science and Scopus. A total of 88 papers fulfilled inclusion criteria. Half of these papers (44/88) were published after 2012. Only 11% of papers (10/88) quoted Dandy’s paper accurately; half of them were published before 1997. Most publications (76% [67/88]) quoted Dandy incorrectly, all of them from 1997 and later. In the remaining 11 papers (13%), the accuracy of the quotes was unclear. The authors found a trend toward more accurate citation in earlier papers.

Critically reviewing Dandy’s report, with an understanding of the historical context, allows a better understanding of his intentions and the value of his contribution.

Restricted access

Ami Baba, Ashirbani Saha, Melissa D. McCradden, Kanwar Boparai, Shudong Zhang, Farhad Pirouzmand, Kim Edelstein, Gelareh Zadeh, and Michael D. Cusimano

OBJECTIVE

Meningiomas can have significant impact on health-related quality of life (HRQOL). Patient-centered, disease-specific instruments for assessing HRQOL in these patients are lacking. To this end, the authors sought to develop and validate a meningioma-specific HRQOL questionnaire through a standardized, patient-centered questionnaire development methodology.

METHODS

The development of the questionnaire involved three main phases: item generation, item reduction, and validation. Item generation consisted of semistructured interviews with patients (n = 30), informal caregivers (n = 12), and healthcare providers (n = 8) to create a preliminary list of items. Item reduction with 60 patients was guided by the clinical impact method, multiple correspondence analysis, and hierarchical cluster analysis. The validation phase involved 162 patients and collected evidence on extreme-groups validity; concurrent validity with the SF-36, FACT-Br, and EQ-5D; and test-retest reliability. The questionnaire takes on average 11 minutes to complete.

RESULTS

The meningioma-specific quality-of-life questionnaire (MQOL) consists of 70 items representing 9 domains. Cronbach’s alpha for each domain ranged from 0.61 to 0.91. Concurrent validity testing demonstrated construct validity, while extreme-groups testing (p = 1.45E-11) confirmed the MQOL’s ability to distinguish between different groups of patients.

CONCLUSIONS

The MQOL is a validated, reliable, and feasible questionnaire designed specifically for evaluating QOL in meningioma patients. This disease-specific questionnaire will be fundamentally helpful in better understanding and capturing HRQOL in the meningioma patient population and can be used in both clinical and research settings.

Restricted access

Mark Lee, Hazel T. Rivera-Rosario, Matthew H. Kim, Gregory P. Bewley, Jane Wang, Zellman Warhaft, Bradley Stylman, Angela I. Park, Aoife MacMahon, Ashutosh Kacker, and Theodore H. Schwartz

OBJECTIVE

The authors developed a negative-pressure, patient face-mounted antechamber and tested its efficacy as a tool for sequestering aerated particles and improving the safety of endonasal surgical procedures.

METHODS

Antechamber prototyping was performed with 3D printing and silicone-elastomer molding. The lowest vacuum settings needed to meet specifications for class I biosafety cabinets (flow rate ≥ 0.38 m/sec) were determined using an anemometer. A cross-validation approach with two different techniques, optical particle sizing and high-speed videography/shadowgraphy, was used to identify the minimum pressures required to sequester aerosolized materials. At the minimum vacuum settings identified, physical parameters were quantified, including flow rate, antechamber pressure, and time to clearance.

RESULTS

The minimum tube pressures needed to meet specifications for class I biosafety cabinets were −1.0 and −14.5 mm Hg for the surgical chambers with (“closed face”) and without (“open face”) the silicone diaphragm covering the operative port, respectively. Optical particle sizing did not detect aerosol generation from surgical drilling at these vacuum settings; however, videography estimated higher thresholds required to contain aerosols, at −6 and −35 mm Hg. Simulation of surgical movement disrupted aerosol containment visualized by shadowgraphy in the open-faced but not the closed-faced version of the mask; however, the closed-face version of the mask required increased negative pressure (−15 mm Hg) to contain aerosols during surgical simulation.

CONCLUSIONS

Portable, negative-pressure surgical compartments can contain aerosols from surgical drilling with pressures attainable by standard hospital and clinic vacuums. Future studies are needed to carefully consider the reliability of different techniques for detecting aerosols.

Free access

Chun-Lung Chou, Hsin-Hung Chen, Huai-Che Yang, Yi-Wei Chen, Ching-Jen Chen, Yu-Wei Chen, Hsiu-Mei Wu, Wan-Yuo Guo, David Hung-Chi Pan, Wen-Yuh Chung, Tai-Tong Wong, and Cheng-Chia Lee

OBJECTIVE

Hypothalamic obesity is common among patients with craniopharyngioma. This study examined whether precise stereotactic radiosurgery reduces the risk of hypothalamic obesity in cases of craniopharyngioma with expected long-term survival.

METHODS

This cohort study included 40 patients who had undergone Gamma Knife radiosurgery (GKRS; n = 22) or fractionated radiotherapy (FRT; n = 18) for residual or recurrent craniopharyngioma. Neurological presentations, tumor volume changes, and BMI values were meticulously reviewed. The median clinical follow-up durations were 9.7 years in the GKRS group and 10.8 years in the FRT group.

RESULTS

The median ages at the time of GKRS and FRT were 9.0 years and 10.0 years, respectively. The median margin dose of GKRS was 12.0 Gy (range 10.0–16.0 Gy), whereas the median dose of FRT was 50.40 Gy (range 44.1–56.3 Gy). Prior to GKRS or FRT, the median BMI values were 20.5 kg/m2 in the GKRS cohort and 20.0 kg/m2 in the FRT cohort. The median BMIs after radiation therapy at final follow-up were 21.0 kg/m2 and 24.0 kg/m2 for the GKRS and FRT cohorts, respectively. In the FRT cohort, BMI curves rapidly increased beyond the 85th percentile of the upper limit of the general population. BMI curves in the GKRS cohort increased more gradually, and many of the patients merged into the normal growth curve after adolescence. However, the observed difference was not statistically significant (p = 0.409).

CONCLUSIONS

The study compared the two adjuvant radiation modalities most commonly used for recurrent and residual craniopharyngioma. The authors’ results revealed that precise radiosurgery dose planning can mediate the subsequent increase in BMI. There is every indication that meticulous GKRS treatment is an effective approach to treating craniopharyngioma while also reducing the risk of hypothalamic obesity.

Open access

Eva Wembacher-Schroeder, Nicole Kerstein, Evan D. Bander, Neeta Pandit-Taskar, Rowena Thomson, and Mark M. Souweidane

OBJECTIVE

With increasing use of convection-enhanced delivery (CED) of drugs, the need for software that can predict infusion distribution has grown. In the context of a phase I clinical trial for pediatric diffuse intrinsic pontine glioma (DIPG), CED was used to administer an anti-B7H3 radiolabeled monoclonal antibody, iodine-124–labeled omburtamab. In this study, the authors retrospectively evaluated a software algorithm (iPlan Flow) for the estimation of infusate distribution based on the planned catheter trajectory, infusion parameters, and patient-specific MRI. The actual infusate distribution, as determined on MRI and PET imaging, was compared to the distribution estimated by the software algorithm. Similarity metrics were used to quantify the agreement between predicted and actual distributions.

METHODS

Ten pediatric patients treated at the same dose level in the NCT01502917 trial conducted at Memorial Sloan Kettering Cancer Center were considered for this retrospective analysis. T2-weighted MRI in combination with PET imaging was used to determine the distribution of infusate in this study. The software algorithm was applied for the generation of estimated fluid distribution maps. Similarity measures included object volumes, intersection volume, union volume, Dice coefficient, volume difference, and the center and average surface distances. Acceptable similarity was defined as a simulated distribution volume (Vd Sim) object that had a Dice coefficient higher than or equal to 0.7, a false-negative rate (FNR) lower than 50%, and a positive predictive value (PPV) higher than 50% compared to the actual Vd (Vd PET).

RESULTS

Data for 10 patients with a mean infusion volume of 4.29 ml (range 3.84–4.48 ml) were available for software evaluation. The mean Vd Sim found to be covered by the actual PET distribution (PPV) was 77% ± 8%. The mean percentage of PET volume found to be outside the simulated volume (FNR) was 34% ± 10%. The mean Dice coefficient was 0.7 ± 0.05. In 8 out of 10 patients, the simulation algorithm fulfilled the combined acceptance criteria for similarity.

CONCLUSIONS

iPlan Flow software can be useful to support planning of trajectories that produce intraparenchymal convection. The simulation algorithm is able to model the likely infusate distribution for a CED treatment in DIPG patients. The combination of trajectory planning guidelines and infusion simulation in the software can be used prospectively to optimize personalized CED treatment.

Free access

Anthony S. Larson, Lorenzo Rinaldo, Waleed Brinjikji, and James P. Klaas

Restricted access

Michael P. Catalino, Carolyn S. Quinsey, and G. Stephen DeCherney

Restricted access

Haydn Hoffman, Karl Abi-Aad, Katherine M. Bunch, Timothy Beutler, Fadar O. Otite, and Lawrence S. Chin

OBJECTIVE

Brain tissue oxygen monitoring combined with intracranial pressure (ICP) monitoring in patients with severe traumatic brain injury (sTBI) may confer better outcomes than ICP monitoring alone. The authors sought to investigate this using a national database.

METHODS

The National Trauma Data Bank from 2013 to 2017 was queried to identify patients with sTBI who had an external ventricular drain or intraparenchymal ICP monitor placed. Patients were stratified according to the placement of an intraparenchymal brain tissue oxygen tension (PbtO2) monitor, and a 2:1 propensity score matching pair was used to compare outcomes in patients with and those without PbtO2 monitoring. Sensitivity analyses were performed using the entire cohort, and each model was adjusted for age, sex, Glasgow Coma Scale score, Injury Severity Score, presence of hypotension, insurance, race, and hospital teaching status. The primary outcome of interest was in-hospital mortality, and secondary outcomes included ICU length of stay (LOS) and overall LOS.

RESULTS

A total of 3421 patients with sTBI who underwent ICP monitoring were identified. Of these, 155 (4.5%) patients had a PbtO2 monitor placed. Among the propensity score–matched patients, mortality occurred in 35.4% of patients without oxygen monitoring and 23.4% of patients with oxygen monitoring (OR 0.53, 95% CI 0.33–0.85; p = 0.007). The unfavorable discharge rates were 56.3% and 47.4%, respectively, in patients with and those without oxygen monitoring (OR 1.41, 95% CI 0.87–2.30; p = 0.168). There was no difference in overall LOS, but patients with PbtO2 monitoring had a significantly longer ICU LOS and duration of mechanical ventilation. In the sensitivity analysis, PbtO2 monitoring was associated with decreased odds of mortality (OR 0.56, 95% CI 0.37–0.84) but higher odds of unfavorable discharge (OR 1.59, 95% CI 1.06–2.40).

CONCLUSIONS

When combined with ICP monitoring, PbtO2 monitoring was associated with lower inpatient mortality for patients with sTBI. This supports the findings of the recent Brain Oxygen Optimization in Severe Traumatic Brain Injury phase 2 (BOOST 2) trial and highlights the importance of the ongoing BOOST3 trial.