Browse

You are looking at 1 - 10 of 58 items for

  • By Author: Hongo, Kazuhiro x
Clear All
Restricted access

Kiyoshi Ito, Mitsunori Yamada, Tetsuyoshi Horiuchi and Kazuhiro Hongo

OBJECTIVE

Few reports have been published regarding the detailed microsurgical anatomy of the dura mater at the craniovertebral junction (CVJ), although many neurosurgeons have had the opportunity to conduct surgeries in this region, such as in cases of Chiari malformation. The authors aimed to evaluate the detailed and precise microsurgical anatomy of the dura mater at the CVJ for safe and effective surgical treatment at this area.

METHODS

This study consisted of dissection of 4 formalin-fixed, continuous, human cadaveric dura maters, extending from the posterior fossa to the C2 level. After removing the occipital bone and C1 laminae, a dural incision was made to harvest the specimen. The following structural and topographical aspects of the dura mater in each region were studied: 1) thickness, 2) morphological characteristics, and 3) vascular structures.

RESULTS

The average thicknesses of the dura mater were 313.4 ± 137.0 μm, 3051.5 ± 798.8 μm, and 866.5 ± 359.0 μm in the posterior cranial fossa, CVJ, and spinal region, respectively. The outer layer of the posterior cranial dura mater and the tendon of the rectus capitis posterior minor muscle were connected, forming the “myodural bridge.” The dura mater at the CVJ had a well-developed vascular network. These vascular structures were determined to be veins or the venous sinus, and were mainly located around the interface between the inner layer of the cranial dura mater and the rectus capitis posterior minor muscle layer. Regarding the morphological features, the bulging located in the inner layer of the dura mater at the CVJ was determined to be the marginal sinus, and contained a pacchionian granulation that allowed for CSF circulation. In the spinal region, the dura mater was characterized by a single, thick layer enclosing the collagen fibers with almost the same orientation.

CONCLUSIONS

The dura mater at the CVJ displayed dynamic morphological changes within an extremely short segment. Its characteristic anatomical features were not similar to those in the cranial regions. The dural bulging at the CVJ was determined to be the venous sinus. During surgery in the posterior fossa, CVJ, and spinal cord, different procedures should be used because of the specific microsurgical anatomy of each region.

Restricted access

Ridzky Firmansyah Hardian, Tetsuya Goto, Yu Fujii, Kohei Kanaya, Tetsuyoshi Horiuchi and Kazuhiro Hongo

OBJECTIVE

The aim of this study was to predict postoperative facial nerve function during pontine cavernous malformation surgery by monitoring facial motor evoked potentials (FMEPs).

METHODS

From 2008 to 2017, 10 patients with pontine cavernous malformations underwent total resection via the trans–fourth ventricle floor approach with FMEP monitoring. House-Brackmann grades and Karnofsky Performance Scale (KPS) scores were obtained pre- and postoperatively. The surgeries were performed using one of 2 safe entry zones into the brainstem: the suprafacial triangle and infrafacial triangle approaches. Six patients underwent the suprafacial triangle approach, and 4 patients underwent the infrafacial triangle approach. A cranial peg screw electrode was used to deliver electrical stimulation for FMEP by a train of 4 or 5 pulse anodal constant current stimulation. FMEP was recorded from needle electrodes on the ipsilateral facial muscles and monitored throughout surgery by using a threshold-level stimulation method.

RESULTS

FMEPs were recorded and analyzed in 8 patients; they were not recorded in 2 patients who had severe preoperative facial palsy and underwent an infrafacial triangle approach. Warning signs appeared in all patients who underwent the suprafacial triangle approach. However, after temporarily stopping the procedures, FMEP findings during surgery showed recovery of the thresholds. FMEPs in patients who underwent the infrafacial triangle approach were stable during the surgery. House-Brackmann grades were unchanged postoperatively in all patients. Postoperative KPS scores improved in 3 patients, decreased in 1, and remained the same in 6 patients.

CONCLUSIONS

FMEPs can be used to monitor facial nerve function during surgery for pontine cavernous malformations, especially when the suprafacial triangle approach is performed.

Full access

Toshihiro Ogiwara, Alhusain Nagm and Kazuhiro Hongo

Full access

Alhusain Nagm, Toshihiro Ogiwara, Takeo Goto, Kazuhiro Hongo and Kenji Ohata

Full access

Yu Fujii, Yoshihiro Muragaki, Takashi Maruyama, Masayuki Nitta, Taiichi Saito, Soko Ikuta, Hiroshi Iseki, Kazuhiro Hongo and Takakazu Kawamata

OBJECTIVE

WHO Grade III gliomas are relatively rare and treated with multiple modalities such as surgery, chemotherapy, and radiotherapy. The impact of the extent of resection (EOR) on improving survival in patients with this tumor type is unclear. Moreover, because of the heterogeneous radiological appearance of Grade III gliomas, the MRI sequence that best correlates with tumor volume is unknown. In the present retrospective study, the authors evaluated the prognostic significance of EOR.

METHODS

Clinical and radiological data from 122 patients with newly diagnosed WHO Grade III gliomas who had undergone intraoperative MRI–guided resection at a single institution between March 2000 and December 2011 were analyzed retrospectively. Patients were divided into 2 groups by histological subtype: 81 patients had anaplastic astrocytoma (AA) or anaplastic oligoastrocytoma (AOA), and 41 patients had anaplastic oligodendroglioma (AO). EOR was calculated using pre- and postoperative T2-weighted and contrast-enhanced T1-weighted MR images. Univariate and multivariate analyses were performed to evaluate the prognostic significance of EOR on overall survival (OS).

RESULTS

The 5-, 8-, and 10-year OS rates for all patients were 74.28%, 70.59%, and 65.88%, respectively. The 5- and 8-year OS rates for patients with AA and AOA were 72.2% and 67.2%, respectively, and the 10-year OS rate was 62.0%. On the other hand, the 5- and 8-year OS rates for patients with AO were 79.0% and 79.0%; the 10-year OS rate is not yet available. The median pre- and postoperative T2-weighted high–signal intensity volumes were 56.1 cm3 (range 1.3–268 cm3) and 5.9 cm3 (range 0–180 cm3), respectively. The median EOR of T2-weighted high–signal intensity lesions (T2-EOR) and contrast-enhanced T1-weighted lesions were 88.8% (range 0.3%–100%) and 100% (range 34.0%–100%), respectively. A significant survival advantage was associated with resection of 53% or more of the preoperative T2-weighted high–signal intensity volume in patients with AA and AOA, but not in patients with AO. Univariate analysis showed that preoperative Karnofsky Performance Scale score (p = 0.0019), isocitrate dehydrogenase 1 (IDH1) mutation (p = 0.0008), and T2-EOR (p = 0.0208) were significant prognostic factors for survival in patients with AA and AOA. Multivariate analysis demonstrated that T2-EOR (HR 3.28; 95% CI 1.22–8.81; p = 0.0192) and IDH1 mutation (HR 3.90; 95% CI 1.53–10.75; p = 0.0044) were predictive of survival in patients with AA and AOA.

CONCLUSIONS

T2-EOR was one of the most important prognostic factors for patients with AA and AOA. A significant survival advantage was associated with resection of 53% or more of the preoperative T2-weighted high–signal intensity volume in patients with AA and AOA.

Free access

Toshihiro Ogiwara, Tetsuya Goto, Alhusain Nagm and Kazuhiro Hongo

Objective

The intelligent arm-support system, iArmS, which follows the surgeon’s arm and automatically fixes it at an adequate position, was developed as an operation support robot. iArmS was designed to support the surgeon’s forearm to prevent hand trembling and to alleviate fatigue during surgery with a microscope. In this study, the authors report on application of this robotic device to endoscopic endonasal transsphenoidal surgery (ETSS) and evaluate their initial experiences.

Methods

The study population consisted of 43 patients: 29 with pituitary adenoma, 3 with meningioma, 3 with Rathke’s cleft cyst, 2 with craniopharyngioma, 2 with chordoma, and 4 with other conditions. All patients underwent surgery via the endonasal transsphenoidal approach using a rigid endoscope. During the nasal and sphenoid phases, iArmS was used to support the surgeon’s nondominant arm, which held the endoscope. The details of the iArmS and clinical results were collected.

Results iArmS followed the surgeon’s arm movement automatically. It reduced the surgeon’s fatigue and stabilized the surgeon’s hand during ETSS. Shaking of the video image decreased due to the steadying of the surgeon’s scope-holding hand with iArmS. There were no complications related to use of the device.

Conclusions

The intelligent armrest, iArmS, seems to be safe and effective during ETSS. iArmS is helpful for improving the precision and safety not only for microscopic neurosurgery, but also for ETSS. Ongoing advances in robotics ensure the continued evolution of neurosurgery.