Browse

You are looking at 1 - 4 of 4 items for

  • By Author: Wellons, John C. x
  • By Author: Park, Tae Sung x
Clear All
Full access

Travis R. Ladner, Jacob K. Greenberg, Nicole Guerrero, Margaret A. Olsen, Chevis N. Shannon, Chester K. Yarbrough, Jay F. Piccirillo, Richard C. E. Anderson, Neil A. Feldstein, John C. Wellons III, Matthew D. Smyth, Tae Sung Park and David D. Limbrick Jr.

OBJECTIVE

Administrative billing data may facilitate large-scale assessments of treatment outcomes for pediatric Chiari malformation Type I (CM-I). Validated International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) code algorithms for identifying CM-I surgery are critical prerequisites for such studies but are currently only available for adults. The objective of this study was to validate two ICD-9-CM code algorithms using hospital billing data to identify pediatric patients undergoing CM-I decompression surgery.

METHODS

The authors retrospectively analyzed the validity of two ICD-9-CM code algorithms for identifying pediatric CM-I decompression surgery performed at 3 academic medical centers between 2001 and 2013. Algorithm 1 included any discharge diagnosis code of 348.4 (CM-I), as well as a procedure code of 01.24 (cranial decompression) or 03.09 (spinal decompression or laminectomy). Algorithm 2 restricted this group to the subset of patients with a primary discharge diagnosis of 348.4. The positive predictive value (PPV) and sensitivity of each algorithm were calculated.

RESULTS

Among 625 first-time admissions identified by Algorithm 1, the overall PPV for CM-I decompression was 92%. Among the 581 admissions identified by Algorithm 2, the PPV was 97%. The PPV for Algorithm 1 was lower in one center (84%) compared with the other centers (93%–94%), whereas the PPV of Algorithm 2 remained high (96%–98%) across all subgroups. The sensitivity of Algorithms 1 (91%) and 2 (89%) was very good and remained so across subgroups (82%–97%).

CONCLUSIONS

An ICD-9-CM algorithm requiring a primary diagnosis of CM-I has excellent PPV and very good sensitivity for identifying CM-I decompression surgery in pediatric patients. These results establish a basis for utilizing administrative billing data to assess pediatric CM-I treatment outcomes.

Full access

Jacob K. Greenberg, Margaret A. Olsen, Chester K. Yarbrough, Travis R. Ladner, Chevis N. Shannon, Jay F. Piccirillo, Richard C. E. Anderson, John C. Wellons III, Matthew D. Smyth, Tae Sung Park and David D. Limbrick Jr.

OBJECTIVE

Chiari malformation Type I (CM-I) is a common and often debilitating pediatric neurological disease. However, efforts to guide preoperative counseling and improve outcomes research are impeded by reliance on small, single-center studies. Consequently, the objective of this study was to investigate CM-I surgical outcomes using population-level administrative billing data.

METHODS

The authors used Healthcare Cost and Utilization Project State Inpatient Databases (SID) to study pediatric patients undergoing surgical decompression for CM-I from 2004 to 2010 in California, Florida, and New York. They assessed the prevalence and influence of preoperative complex chronic conditions (CCC) among included patients. Outcomes included medical and surgical complications within 90 days of treatment. Multivariate logistic regression was used to identify risk factors for surgical complications.

RESULTS

A total of 936 pediatric CM-I surgeries were identified for the study period. Overall, 29.2% of patients were diagnosed with syringomyelia and 13.7% were diagnosed with scoliosis. Aside from syringomyelia and scoliosis, 30.3% of patients had at least 1 CCC, most commonly neuromuscular (15.2%) or congenital or genetic (8.4%) disease. Medical complications were uncommon, occurring in 2.6% of patients. By comparison, surgical complications were diagnosed in 12.7% of patients and typically included shunt-related complications (4.0%), meningitis (3.7%), and other neurosurgery-specific complications (7.4%). Major complications (e.g., stroke or myocardial infarction) occurred in 1.4% of patients. Among children with CCCs, only comorbid hydrocephalus was associated with a significantly increased risk of surgical complications (OR 4.5, 95% CI 2.5–8.1).

CONCLUSIONS

Approximately 1 in 8 pediatric CM-I patients experienced a surgical complication, whereas medical complications were rare. Although CCCs were common in pediatric CM-I patients, only hydrocephalus was independently associated with increased risk of surgical events. These results may inform patient counseling and guide future research efforts.

Full access

Scott L. Zuckerman, Ilyas M. Eli, Manish N. Shah, Nadine Bradley, Christopher M. Stutz, Tae Sung Park and John C. Wellons III

Object

Axillary nerve palsy, isolated or as part of a more complex brachial plexus injury, can have profound effects on upper-extremity function. Radial to axillary nerve neurotization is a useful technique for regaining shoulder abduction with little compromise of other neurological function. A combined experience of this procedure used in children is reviewed.

Methods

A retrospective review of the authors' experience across 3 tertiary care centers with brachial plexus and peripheral nerve injury in children (younger than 18 years) revealed 7 cases involving patients with axillary nerve injury as part of an overall brachial plexus injury with persistent shoulder abduction deficits. Two surgical approaches to the region were used.

Results

Four infants (ages 0.6, 0.8, 0.8, and 0.6 years) and 3 older children (ages 8, 15, and 17 years) underwent surgical intervention. No patient had significant shoulder abduction past 15° preoperatively. In 3 cases, additional neurotization was performed in conjunction with the procedure of interest. Two surgical approaches were used: posterior and transaxillary. All patients displayed improvement in shoulder abduction. All were able to activate their deltoid muscle to raise their arm against gravity and 4 of 7 were able to abduct against resistance. The median duration of follow-up was 15 months (range 8 months to 5.9 years).

Conclusions

Radial to axillary nerve neurotization improved shoulder abduction in this series of patients treated at 3 institutions. While rarely used in children, this neurotization procedure is an excellent option to restore deltoid function in children with brachial plexus injury due to birth or accidental trauma.

Restricted access

Tae Sung Park