Browse

You are looking at 1 - 8 of 8 items for

  • By Author: Theodore, Nicholas x
  • By Author: Reyes, Phillip M. x
Clear All Modify Search
Full access

Nestor G. Rodriguez-Martinez, Amey Savardekar, Eric W. Nottmeier, Stephen Pirris, Phillip M. Reyes, Anna G. U. S. Newcomb, George A. C. Mendes, Samuel Kalb, Nicholas Theodore and Neil R. Crawford

OBJECTIVE

Transvertebral screws provide stability in thoracic spinal fixation surgeries, with their use mainly limited to patients who require a pedicle screw salvage technique. However, the biomechanical impact of transvertebral screws alone, when they are inserted across 2 vertebral bodies, has not been studied. In this study, the authors assessed the stability offered by a transvertebral screw construct for posterior instrumentation and compared its biomechanical performance to that of standard bilateral pedicle screw and rod (PSR) fixation.

METHODS

Fourteen fresh human cadaveric thoracic spine segments from T-6 to T-11 were divided into 2 groups with similar ages and bone quality. Group 1 received transvertebral screws across 2 levels without rods and subsequently with interconnecting bilateral rods at 3 levels (T8–10). Group 2 received bilateral PSR fixation and were sequentially tested with interconnecting rods at T7–8 and T9–10, at T8–9, and at T8–10. Flexibility tests were performed on intact and instrumented specimens in both groups. Presurgical and postsurgical O-arm 3D images were obtained to verify screw placement.

RESULTS

The mean range of motion (ROM) per motion segment with transvertebral screws spanning 2 levels compared with the intact condition was 66% of the mean intact ROM during flexion-extension (p = 0.013), 69% during lateral bending (p = 0.015), and 47% during axial rotation (p < 0.001). The mean ROM per motion segment with PSR spanning 2 levels compared with the intact condition was 38% of the mean intact ROM during flexion-extension (p < 0.001), 57% during lateral bending (p = 0.007), and 27% during axial rotation (p < 0.001). Adding bilateral rods to the 3 levels with transvertebral screws decreased the mean ROM per motion segment to 28% of intact ROM during flexion-extension (p < 0.001), 37% during lateral bending (p < 0.001), and 30% during axial rotation (p < 0.001). The mean ROM per motion segment for PSR spanning 3 levels was 21% of intact ROM during flexion-extension (p < 0.001), 33% during lateral bending (p < 0.001), and 22% during axial rotation (p < 0.001).

CONCLUSIONS

Biomechanically, fixation with a novel technique in the thoracic spine involving transvertebral screws showed restoration of stability to well within the stability provided by PSR fixation.

Full access

Nestor G. Rodriguez-Martinez, Luis Perez-Orribo, Samuel Kalb, Phillip M. Reyes, Anna G. U. S. Newcomb, Jeremy Hughes, Nicholas Theodore and Neil R. Crawford

OBJECT

The effects of obesity on lumbar biomechanics are not fully understood. The aims of this study were to analyze the biomechanical differences between cadaveric L4–5 lumbar spine segments from a large group of nonobese (body mass index [BMI] < 30 kg/m2) and obese (BMI ≥ 30 kg/m2) donors and to determine if there were any radiological differences between spines from nonobese and obese donors using MR imaging.

METHODS

A total of 168 intact L4–5 spinal segments (87 males and 81 females) were tested using pure-moment loading, simulating flexion-extension, lateral bending, and axial rotation. Axial compression tests were performed on 38 of the specimens. Sex, age, and BMI were analyzed with biomechanical parameters using 1-way ANOVA, Pearson correlation, and multiple regression analyses. MR images were obtained in 12 specimens (8 from obese and 4 from nonobese donors) using a 3-T MR scanner.

RESULTS

The segments from the obese male group allowed significantly greater range of motion (ROM) than those from the nonobese male group during axial rotation (p = 0.018), while there was no difference between segments from obese and nonobese females (p = 0.687). There were no differences in ROM between spines from obese and nonobese donors during flexion-extension or lateral bending for either sex. In the nonobese population, the ROM during axial rotation was significantly greater for females than for males (p = 0.009). There was no significant difference between sexes in the obese population (p = 0.892). Axial compressive stiffness was significantly greater for the obese than the nonobese population for both the female-only group and the entire study group (p < 0.01); however, the difference was nonsignificant in the male population (p = 0.304). Correlation analysis confirmed a significant negative correlation between BMI and resistance to deformation during axial compression in the female group (R = −0.65, p = 0.004), with no relationship in the male group (R = 0.03, p = 0.9). There was also a significant negative correlation between ROM during flexion-extension and BMI for the female group (R = −0.38, p = 0.001), with no relationship for the male group (R = 0.06, p = 0.58). Qualitative analysis using MR imaging indicated greater facet degeneration and a greater incidence of disc herniations in the obese group than in the control group.

CONCLUSIONS

Based on flexibility and compression tests, lumbar spinal segments from obese versus nonobese donors seem to behave differently, biomechanically, during axial rotation and compression. The differences are more pronounced in women. MR imaging suggests that these differences may be due to greater facet degeneration and an increased amount of disc herniation in the spines from obese individuals.

Full access

Nestor G. Rodriguez-Martinez, Sam Safavi-Abbasi, Luis Perez-Orribo, Anna G. U. S. Newcomb, Phillip M. Reyes, Galyna Loughran, Nicholas Theodore and Neil R. Crawford

OBJECT

The Universal Clamp Spinal Fixation System (UC) is a novel sublaminar connection for the spine that is currently used in conjunction with pedicle screws at the thoracic levels for the correction of scoliosis. This device allows the surgeon to attach rods and incorporate a pedicle screw construction. The flexible composition of the UC should provide flexibility intermediate to the uninstrumented spine and an all-screw construct. This hypothesis was tested in vitro using nondestructive flexibility testing of human cadaveric spine segments.

METHODS

Six unembalmed human cadaveric thoracic spine segments from T-3 to T-11 were used. The specimens were tested under the following conditions: 1) intact; 2) after bilateral screws were placed at T4-T10 and interconnected with longitudinal rods; 3) after placement of a hybrid construction with screws at T-4, T-7, and T-10 with an interconnecting rod on one side and screws at T-4 and T-10 with the UC at T5–9 on the contralateral side; (4) after bilateral screws were placed at T-4 and T-10 and interconnected with rods and bilateral UC were placed at T5–9; and 5) after bilateral screws at T-4 and T-10 were placed and interconnected with rods and bilateral sublaminar cables were placed at T5–9. Pure moments of 6.0 Nm were applied while optoelectronically recording 3D angular motion.

RESULTS

Bilateral UC placement and bilateral sublaminar cables both resulted in a significantly greater range of motion than bilateral pedicle screws during lateral bending and axial rotation, but not during flexion or extension. There were no differences in stability between bilateral UC and bilateral cables. The construct with limited screws on one side and UC contralaterally showed comparable stability to bilateral UC and bilateral cables.

CONCLUSIONS

These results support using the UC as a therapeutic option for spinal stabilization because it allows comparable stability to the sublaminar cables and provides flexibility intermediate to that of the uninstrumented spine and an all-screw construct. Equivalent stability of the hybrid, bilateral UC, and bilateral cable constructs indicates that 6-level UC provides stability comparable to that of a limited (3-point) pedicle screw-rod construct.

Restricted access

Ali A. Baaj, Phillip M. Reyes, Ali S. Yaqoobi, Juan S. Uribe, Fernando L. Vale, Nicholas Theodore, Volker K. H. Sonntag and Neil R. Crawford

Object

Unstable fractures at the thoracolumbar junction often require extended, posterior, segmental pedicular fixation. Some surgeons have reported good clinical outcomes with short-segment constructs if additional pedicle screws are inserted at the fractured level. The goal of this study was to quantify the biomechanical advantage of the index-level screw in a fracture model.

Methods

Six human cadaveric T10–L4 specimens were tested. A 3-column injury at L-1 was simulated, and 4 posterior constructs were tested as follows: one-above-one-below (short construct) with/without index-level screws, and two-above-two-below (long construct) with/without index-level screws. Pure moments were applied quasistatically while 3D motion was measured optoelectronically. The range of motion (ROM) and lax zone across T12–L2 were measured during flexion, extension, left and right lateral bending, and left and right axial rotation.

Results

All constructs significantly reduced the ROM and lax zone in the fractured specimens. With or without index-level screws, the long-segment constructs provided better immobilization than the short-segment constructs during all loading modes. Adding an index-level screw to the short-segment construct significantly improved stability during flexion and lateral bending; there was no significant improvement in stability when an index-level screw was added to the long-segment construct. Overall, bilateral index-level screws decreased the ROM of the 1-level construct by 25% but decreased the ROM of the 2-level construct by only 3%.

Conclusions

In a fracture model, adding index-level pedicle screws to short-segment constructs improves stability, although stability remains less than that provided by long-segment constructs with or without index-level pedicle screws. Therefore, highly unstable fractures likely require extended, long-segment constructs for optimum stability.

Restricted access

Bruno C. R. Lazaro, Fatih Ersay Deniz, Leonardo B. C. Brasiliense, Phillip M. Reyes, Anna G. U. Sawa, Nicholas Theodore, Volker K. H. Sonntag and Neil R. Crawford

Object

Posterior screw-rod fixation for thoracic spine trauma usually involves fusion across long segments. Biomechanical data on screw-based short-segment fixation for thoracic fusion are lacking. The authors compared the effects of spanning short and long segments in the thoracic spine.

Methods

Seven human spine segments (5 segments from T-2 to T-8; 2 segments from T-3 to T-9) were prepared. Pure-moment loading of 6 Nm was applied to induce flexion, extension, lateral bending, and axial rotation while 3D motion was measured optoelectronically. Normal specimens were tested, and then a wedge fracture was created on the middle vertebra after cutting the posterior ligaments. Five conditions of instrumentation were tested, as follows: Step A, 4-level fixation plus cross-link; Step B, 2-level fixation; Step C, 2-level fixation plus cross-link; Step D, 2-level fixation plus screws at fracture site (index); and Step E, 2-level fixation plus index screws plus cross-link.

Results

Long-segment fixation restricted 2-level range of motion (ROM) during extension and lateral bending significantly better than the most rigid short-segment construct. Adding index screws in short-segment constructs significantly reduced ROM during flexion, lateral bending, and axial rotation (p < 0.03). A cross-link reduced axial rotation ROM (p = 0.001), not affecting other loading directions (p > 0.4).

Conclusions

Thoracic short-segment fixation provides significantly less stability than long-segment fixation for the injury studied. Adding a cross-link to short fixation improved stability only during axial rotation. Adding a screw at the fracture site improved short-segment stability by an average of 25%.

Restricted access

Eric M. Horn, Phillip M. Reyes, Seungwon Baek, Mehmet Senoglu, Nicholas Theodore, Volker K. H. Sonntag and Neil R. Crawford

Object

The small diameter of the pedicle can make C-7 pedicle screw insertion dangerous. Although transfacet screws have been studied biomechanically when used in pinning joints, they have not been well studied when used as part of a C7–T1 screw/rod construct. The authors therefore compared C7–T1 fixation using a C-7 transfacet screw/T-1 pedicle screw construct with a construct composed of pedicle screws at both levels.

Methods

Each rigid posterior screw/rod construct was placed in 7 human cadaveric C6–T2 specimens (14 total). Specimens were tested in normal condition, after 2-column instability, and once fixated. Nondestructive, nonconstraining pure moments (maximum 1.5 Nm) were applied to induce flexion, extension, lateral bending, and axial rotation while recording 3D motion optoelectronically. The entire construct was then loaded to failure by dorsal linear force.

Results

There was no significant difference in angular range of motion between the 2 instrumented groups during any loading mode (p > 0.11, nonpaired t-tests). Both constructs reduced motion to < 2° in any direction and allowed significantly less motion than in the normal condition. The C-7 facet screw/T-1 pedicle screw construct allowed a small but significantly greater lax zone than the pedicle screw/rod construct during lateral bending, and it failed under significantly less load than the pedicle screw/rod construct (p < 0.001).

Conclusions

When C-7 transfacet screws are connected to T-1 pedicle screws, they provide equivalent stability of constructs formed by pedicle screws at both levels. Although less resistant to failure, the transfacet screw construct should be a viable alternative in patients with healthy bone.