You are looking at 1 - 5 of 5 items for

  • By Author: Theodore, Nicholas x
  • By Author: Rangel-Castilla, Leonardo x
Clear All
Full access

Eduardo Martinez-del-Campo, Jay D. Turner, Leonardo Rangel-Castilla, Hector Soriano-Baron, Samuel Kalb and Nicholas Theodore


If left untreated, occipitocervical (OC) instability may lead to serious neurological injury or death. Open internal fixation is often necessary to protect the neurovascular elements. This study reviews the etiologies for pediatric OC instability, analyzes the radiographic criteria for surgical intervention, discusses surgical fixation techniques, and evaluates long-term postoperative outcomes based on a single surgeon's experience.


The charts of all patients < 18 years old who underwent internal OC fixation conducted by the senior author were retrospectively reviewed. Forty consecutive patients were identified for analysis. Patient demographic data, OC junction pathology, radiological diagnostic tools, surgical indications, and outcomes are reported.


The study population consisted of 20 boys and 20 girls, with a mean age of 7.3 years. Trauma (45% [n = 18]) was the most common cause of instability, followed by congenital etiologies (37.5% [n = 15]). The condyle-C1 interval had a diagnostic sensitivity of 100% for atlantooccipital dislocation. The median number of fixated segments was 5 (occiput–C4). Structural bone grafts were used in all patients. Postsurgical neurological improvement was seen in 88.2% (15/17) of patients with chronic myelopathy and in 25% (1/4) of patients with acute myelopathy. Preoperatively, 42.5% (17/40) of patients were neurologically intact and remained unchanged at last follow-up, 42.5% (17/40) had neurological improvement, 12.5% (5/40) remained unchanged, and 2.5% (1/40) deteriorated. All patients had successful fusion at 1-year follow-up. The complication rate was 7.5% (3/40), including 1 case of vertebral artery injury.


Occipitocervical fixation is safe in children and provides immediate immobilization, with excellent survival and arthrodesis rates. Of the radiographic tools evaluated, the condyle-C1 interval was the most predictive of atlantooccipital dislocation.

Free access

Eduardo Martinez-del-Campo, Leonardo Rangel-Castilla, Hector Soriano-Baron and Nicholas Theodore


Performance of MR imaging in patients with gunshot wounds at or near the lumbar spinal canal is controversial. The authors reviewed the literature on the use of MR imaging in gunshot wounds to the spine. They discuss the results from in vitro and clinical studies, analyze the physical properties of common projectiles, and evaluate the safety and indications for MR imaging when metallic fragments are located near the spinal canal.


A review of the English-language literature was performed. Data from 25 articles were analyzed, including 5 in vitro studies of the interaction between 95 projectiles and the MR system's magnetic fields, and the clinical outcomes in 22 patients with metallic fragments at or near the spinal canal who underwent MR imaging.


Properties of 95 civilian and military projectiles were analyzed at a magnet strength of 1, 1.5, 3, and 7 T. The most common projectiles were bullets with a core of lead, either with a copper jacket or unjacketed (73 [76.8%] of 95). Steel-containing (core or jacket) projectiles comprised 14.7%. No field interaction was evident in 78 (96.3%) of the 81 nonsteel projectiles. All steel projectiles showed at least positive deflection forces, longitudinal migration, or rotation. Heating of the projectiles was clinically insignificant. Image artifact was significant in all 9 steel bullets tested, but was not significant in 39 (88.6%) of the 44 nonsteel bullets tested. Overall, 22 patients with complete (82%) and incomplete (14%) spinal cord injury secondary to a projectile lodged inside the spinal canal underwent MR imaging. Discomfort and further physical or neurological deficits were not reported by any patient. Two patients with spinal cord injuries underwent MR imaging studies before surgical decompression and had subsequent, significant neurological improvement.


Metallic implants near or at the spinal canal are a relative contraindication for MR imaging. However, safe MR imaging might be feasible when a projectile's properties and a patient's individualized clinical presentation are considered.