Browse

You are looking at 1 - 4 of 4 items for

  • By Author: Samii, Madjid x
  • By Author: Walter, Gerhard F. x
Clear All
Restricted access

Roger Breyer, Sami Hussein, Dorel L. Radu, Klaus-Martin Pütz, Sven Gunia, Hartmut Hecker, Madjid Samii, Gerhard F. Walter and Alexandru C. Stan

Object. Glioblastoma multiforme (GBM) invasiveness is a complex process that involves recognition and attachment of GBM cells to particular extracellular matrix (ECM) molecules before migrating into proteolytically modified matrix and inducing angiogenesis. The CD44 molecule, which is a transmembrane adhesion molecule found on a wide variety of cells including GBM, has been suggested as the principal mediator of migration and invasion. The aim of the present study was to demonstrate whether an antibody specific to the standard form of CD44 (CD44s, 85–90 kD) might prevent invasion and thus disrupt progression of C6 GBM in vivo.

Methods. Immunostaining demonstrated homogeneous expression of CD44s on the surface of C6 GBM cells and tumors. Flow cytometric analysis demonstrated binding saturation of anti-CD44s monoclonal antibody (mAb) to the receptor at 1 µg/5 × 105 cells. Blocking of CD44s in vitro resulted in a dose-dependent progressive (up to 94 ± 2.7%; mean ± standard deviation [SD]) detachment of C6 cells from ECM-coated culture. Blocking of CD44s in vivo resulted in significantly reduced C6 brain tumors (3.6 ± 0.4% [SD])—measured as the quotient: tumor surface (mm2)/brain surface (mm2) × 100—compared with untreated (19.9 ± 0.9%) or sham-treated (19.2 ± 1.1 to 19.3 ± 2.5% [SD]) rats. Disruption of C6 GBM progression correlated with an improved food intake; treated rats were significantly less cachectic (166.6 ± 16.4 g [SD]) than those that were untreated (83 ± 2.7 g [SD]) or sham-treated (83.4 ± 1.1 to 83 ± 2.2 g [SD]) rats.

Conclusions. The authors conclude that CD44s-targeted treatment with specific mAb may represent an effective means for preventing progression of highly invasive GBMs.

Restricted access

Petra M. Klinge, Heike Beck, Thomas Brinker, Gerhard F. Walter and Madjid Samii

Object. Investigation into a potential treatment for the acute period following onset of spontaneous subarachnoid hemorrhage (SAH) is hampered by the lack of a standardized experimental model. For that purpose the authors elaborated on a small-animal model in which computer-controlled intracisternal blood infusion is used and investigated whether this model can reliably reproduce acute neuronal injury after SAH.

Methods. Whole autologous blood (blood-infused group) or isotonic saline (control group) was infused into the cisterna magna or olfactory cistern of rats. The infusions decreased exponentially during a 5-minute period. Throughout the infusion period, intracranial pressure (ICP) was monitored. Neuronal injury was quantified by observing tissue immunoreactivity to a 70-kD heat shock protein (HSP70) and comparing this with the tissue's reaction to hematoxylin and eosin staining. On Days 1, 3, and 5, the CA1, CA3, and dentate gyrus regions of the hippocampus were analyzed, respectively.

During saline infusion ICP increased within seconds beyond 80 mm Hg and afterward decreased in accordance with the infusion rate. During the infusion of blood, the same initial pressure peak was found, but the ICP remained increased beyond this pressure level throughout the 5-minute infusion period. The HSP70 immunoreactivity in the saline-infused group was found only on Day 1 in the CA1 region and the dentate gyrus, but not in the CA3. After injection of whole blood, there was HSP70-positive staining in the CA1, CA3, and dentate gyrus regions throughout the observation period.

Conclusions. The controlled cisternal infusion of blood caused neuronal injury that resembled that of previous experimental models that produce SAH by rupture of intracranial vessels with endovascular techniques. Unlike those experiments, the intracisternal infusion technique presented by the authors provides more standardized bleeding with regard to ICP, the volume of subarachnoid blood, and the extent of acute cellular injury.

Full access

Roger Breyer, Sami Hussein, Dorel L. Radu, Klaus-Martin Pütz, Sven Gunia, Hartmut Hecker, Madjid Samii, Gerhard F. Walter and Alexandru C. Stan

Glioblastoma multiforme (GBM) invasiveness is a complex process that involves recognition and attachment of GBM cells to particular extracellular matrix (ECM) molecules prior to migrating into proteolytically modified matrix and inducing angiogenesis. The CD44, which is a transmembrane adhesion molecule found on a wide variety of cells including GBM, has been suggested as the principal mediator of migration and invasion. The aim of the present study was to demonstrate whether an antibody specific to the standard form of CD44 (CD44s, 85-90 kDa) might prevent invasion and thus disrupt progression of C6 GBM in vivo.

Immunostaining demonstrated homogenous expression of CD44s on the surface of C6 GBM cells and tumors. Flow cytometric analysis demonstrated binding saturation of anti-CD44s mAb to the receptor at 1 μg/5 X 105 cells. Blocking of CD44s in vitro resulted in a dose-dependent progressive (up to 94 ± 2.7%; mean ± standard deviation [SD]) detachment of C6 cells from ECM-coated culture surfaces. Blocking of CD44s in vivo resulted in significantly reduced C6 brain tumors (3.6 ± 0.4% [SD])--measured as the quotient: tumor surface (mm2)/brain surface (mm2) X 100--as compared with untreated (19.9% ± 0.9%) or sham-treated rats (19.2 ± 1.1% to 19.3 ± 2.5% [SD]). Disruption of C6 GBM progression correlated with an improved food intake; treated rats were significantly less cachectic (166.6 ± 16.4 g [SD]) than those that were untreated (83.0 ± 2.7 g [SD]) or sham-treated (83.4 ± 1.1 g to 83.0 ± 2.2 g [SD]) rats.

The authors conclude that CD44s-targeted treatment with specific mAb may represent an effective means for preventing progression of highly invasive GBMs.