Browse

You are looking at 1 - 3 of 3 items for

  • By Author: Rhoton, Albert L. x
  • By Author: Peace, David x
Clear All
Full access

Juan C. Fernandez-Miranda, Paul A. Gardner, Milton M. Rastelli Jr., Maria Peris-Celda, Maria Koutourousiou, David Peace, Carl H. Snyderman and Albert L. Rhoton Jr.

Object

The object of this paper was to describe the surgical anatomy and technical nuances of the endonasal transcavernous posterior clinoidectomy approach with interdural pituitary transposition and to report the clinical outcome of this technical modification.

Methods

The surgical anatomy of the proposed approach was studied in 10 colored silicon-injected anatomical specimens. The medical records of 12 patients that underwent removal of the posterior clinoid(s) with this technique were reviewed.

Results

The natural anatomical corridor provided by the cavernous sinus is used to get access to the posterior clinoid by mobilizing the pituitary gland in an interdural fashion. The medial wall of the cavernous sinus is preserved intact and attached to the gland during its medial and superior mobilization. This provides protection to the gland, allowing for preservation of its venous drainage pathways. The inferior hypophyseal artery is transected to facilitate the manipulation of the medial wall of the cavernous sinus and pituitary gland. This approach was successfully performed in all patients, including 6 with chordomas, 5 with petroclival meningiomas, and 1 with an epidermoid tumor. No patient in this series had neurovascular injury related to the posterior clinoidectomy. There were no instances of permanent hypopituitarism or diabetes insipidus.

Conclusions

The authors introduce a surgical variant of the endoscopic endonasal posterior clinoidectomy approach that does not require intradural pituitary transposition and is more effective than the purely extradural approach. The endoscopic endonasal transcavernous approach facilitates the removal of prominent posterior clinoids increasing the working space at the lateral recess of the interpeduncular cistern, while preserving the pituitary function.

Full access

Guilherme C. Ribas, Albert L. Rhoton Jr., Oswaldo R. Cruz and David Peace

Object

The goal of this study was to delimit the external cranial projection of the transverse and sigmoid sinuses, and to establish initial strategic systematized burr hole sites for lateral infratentorial suboccipital approaches based on external cranial landmarks particularly related to the lambdoid, occipitomastoid, and parietomastoid sutures.

Methods

The external cranial projection of the transverse and sigmoid sinuses was studied through their external outlining obtained with the aid of multiple small perforations made from inside to outside along the inner margins of the sinuses of 50 paired temporoparietooccipital regions in 25 dried adult human skulls. The burr hole placement was studied by evaluating the supratentorial, over-the-sinuses, and infratentorial components of 1-cm-diameter openings made at strategic sites identified in the initial part of the study, which was performed in another 50 paired temporoparietooccipital regions.

The asterion and the midpoint of the inion–asterion line were found to be particularly related to the inferior half of the transverse sinus; the transverse and sigmoid sinuses' transition occurs 1 cm anteriorly to the asterion across the parietomastoid suture, and the most superior part of the sigmoid sinus is located anteriorly to the occipitomastoid suture, with its posterior margin crossing this suture posteriorly to the most superior aspect of the mastoid process, which is located at the most superior level of the mastoid notch. Burr holes made at the midpoint of the inion–asterion line, at the asterion, 1 cm anterior to the asterion, just inferiorly to the parietomastoid suture, and over the occipitomastoid suture at the most superior level of the mastoid notch are appropriate to expose the inferior half of the transverse sinus at its midpoint, the inferior half of the transverse sinus at its most lateral aspect, the transverse and sigmoid sinuses' transition, and the posterior margin of the basal aspect of the sigmoid sinus, respectively.

Conclusions

These findings allow an estimation of the transverse and sigmoid sinuses' external cranial projection. The asterion and the most posterior part of the parietomastoid suture constitute a suitable initial burr hole site at which to perform an upper or asterional suboccipital craniectomy to expose the superior aspect of the cerebellopontine angle (CPA). The occipitomastoid suture at the most superior aspect of the mastoid notch constitutes an adequate initial burr hole site at which to perform a basal suboccipital craniectomy to expose the lower portion of the CPA. The sites can be used together as initial burr hole sites to perform wide suboccipital exposures, because they already constitute natural infratentorial lateral limits.

Restricted access

Toshio Matsushima, Albert L. Rhoton Jr., Evandro de Oliveira and David Peace

✓ The microsurgical anatomy of the veins of the posterior fossa was defined in 25 cadavers. These veins are divided into four groups: superficial, deep, brain-stem, and bridging veins. The superficial veins are divided on the basis of which of the three cortical surfaces they drain: the tentorial surface, which faces the tentorium and is exposed in a supracerebellar approach, is drained by the superior hemispheric and vermian veins; the suboccipital surface, which is below and between the lateral and sigmoid sinuses and is exposed in a wide suboccipital craniectomy, is drained by the inferior hemispheric and inferior vermian veins; and the petrosal surface, which faces forward toward the posterior surface of the petrous bone and is retracted to expose the cerebellopontine angle, is drained by the anterior hemispheric veins. The deep veins course in the three fissures between the cerebellum and the brain stem, and on the three cerebellar peduncles. The major deep veins in the fissures between the cerebellum and brain stem are the veins of the cerebellomesencephalic, cerebellomedullary, and cerebellopontine fissures, and those on the cerebellar peduncles are the veins of the superior, middle, and inferior cerebellar peduncles. The veins of the brain stem are named on the basis of whether they drain the midbrain, pons, or medulla. The veins of the posterior fossa terminate as bridging veins, which collect into three groups: a galenic group which drains into the vein of Galen; a petrosal group which drains into the petrosal sinuses; and a tentorial group which drains into the tentorial sinuses near the torcula.