Browse

You are looking at 1 - 3 of 3 items for

  • By Author: Oldfield, Edward H. x
  • By Author: Herscovitch, Peter x
Clear All
Restricted access

Bernhard Zünkeler, Richard E. Carson, Jeff Olson, Ronald G. Blasberg, Hetty Devroom, Robert J. Lutz, Stephen C. Saris, Donald C. Wright, William Kammerer, Nicholas J. Patronas, Robert L. Dedrick, Peter Herscovitch and Edward H. Oldfield

✓ Hyperosmolar blood-brain barrier disruption (HBBBD), produced by infusion of mannitol into the cerebral arteries, has been used in the treatment of brain tumors to increase drug delivery to tumor and adjacent brain. However, the efficacy of HBBBD in brain tumor therapy has been controversial. The goal of this study was to measure changes in vascular permeability after HBBBD in patients with malignant brain tumors. The permeability (K1) of tumor and normal brain blood vessels was measured using rubidium-82 and positron emission tomography before and repeatedly at 8- to 15-minute intervals after HBBBD. Eighteen studies were performed in 13 patients, eight with glioblastoma multiforme and five with anaplastic astrocytoma.

The HBBBD increased K1 in all patients. Baseline K1 values were 2.1 ± 1.4 and 34.1 ± 22.1 µl/minute/ml (± standard deviation) for brain and tumor, respectively. The peak absolute increases in K1 following HBBBD were 20.8 ± 11.7 and 19.7 ± 10.7 µl/minute/ml for brain and tumor, corresponding to percentage increases of approximately 1000% in brain and approximately 60% in tumor. The halftimes for return of K1 to near baseline for brain and tumor were 8.1 ± 3.8 and 4.2 ± 1.2 minutes, respectively. Simulations of the effects of HBBBD made using a very simple model with intraarterial methotrexate, which is exemplary of drugs with low permeability, indicate that 1) total exposure of the brain and tumor to methotrexate, as measured by the methotrexate concentration-time integral (or area under the curve), would increase with decreasing infusion duration and would be enhanced by 130% to 200% and by 7% to 16%, respectively, compared to intraarterial infusion of methotrexate alone; and 2) exposure time at concentrations above 1 µM, the minimal concentration required for the effects of methotrexate, would not be enhanced in tumor and would be enhanced by only 10% in brain.

Hyperosmolar blood-brain barrier disruption transiently increases delivery of water-soluble compounds to normal brain and brain tumors. Most of the enhancement of exposure results from trapping the drug within the blood-brain barrier, an effect of the very transient alteration of the blood-brain barrier by HBBBD. Delivery is most effective when a drug is administered within 5 to 10 minutes after disruption. However, the increased exposure and exposure time that occur with methotrexate, the permeability of which is among the lowest of the agents currently used clinically, are limited and the disproportionate increase in brain exposure, compared to tumor exposure, may alter the therapeutic index of many drugs.

Restricted access

Bernhard Zünkeler, Richard E. Carson, Jeffrey Olson, Ronald G. Blasberg, Mary Girton, John Bacher, Peter Herscovitch and Edward H. Oldfield

✓ Hyperosmolar blood-brain barrier (BBB) disruption remains controversial as an adjuvant therapy to increase delivery of water-soluble compounds to extracellular space in the brain in patients with malignant brain tumors. To understand the physiological effects of BBB disruption more clearly, the authors used positron emission tomography (PET) to study the time course of BBB permeability in response to the potassium analog rubidium-82 (82Rb, halflife 75 seconds) following BBB disruption in anesthetized adult baboons. Mannitol (25%) was injected into the carotid artery and PET scans were performed before and serially at 8- to 15-minute intervals after BBB disruption. The mean influx constant (K1), a measure of permeability-surface area product, in ipsilateral, mannitol-perfused mixed gray- and white-matter brain regions was 4.9 ± 2.4 µl/min/ml (± standard deviation) at baseline and increased more than 100% (ΔK1 = 9.4 ± 5.1 µl/min/ml, 18 baboons) in brain perfused by mannitol. The effect of BBB disruption on K1 correlated directly with the total amount of mannitol administered (p < 0.005). Vascular permeability returned to baseline with a halftime of 24.0 ± 14.3 minutes. The mean brain plasma volume rose by 0.57 ± 0.34 ml/100 ml in ipsilateral perfused brain following BBB disruption. This work provides a basis for the in vivo study of permeability changes induced by BBB disruption in human brain and brain tumors.

Restricted access

Intravascular streaming during carotid artery infusions

Demonstration in humans and reduction using diastole-phased pulsatile administration

Stephen C. Saris, Ronald G. Blasberg, Richard E. Carson, Hetty L. deVroom, Robert Lutz, Robert L. Dedrick, Karen Pettigrew, Richard Chang, John Doppman, Donald C. Wright, Peter Herscovitch and Edward H. Oldfield

✓ Intra-arterial carotid artery chemotherapy for malignant gliomas is limited by focal injuries to the eye and brain which may be caused by poor mixing of the drug with blood at the infusion site. This inadequate mixing can be eliminated in animal models with diastole-phased pulsatile infusion (DPPI) which creates 1-ml/sec spurts during the slow blood flow phase of diastole. Before treatment with intracarotid cisplatin, 10 patients with malignant gliomas were studied to determine whether intravascular streaming occurs after intracarotid infusion in humans, and if so, if it is reduced with DPPI. Regional cerebral blood flow (rCBF) studies were performed by intravenous injection of H2 15O and positron emission tomography. This was followed by supraor infraophthalmic internal carotid artery (ICA) injections of H2 15O with either continuous infusion or DPPI. Local H2 15O concentration in the brain was determined and the images of radiotracer distribution in the continuous infusion and DPPI studies were compared to the rCBF images. Intravascular streaming of the infusate was identified by a heterogeneous distribution of the infused H2 15O in brain compared to rCBF.

Extensive and variable intravascular streaming occurred in three patients who received infusions into the supraophthalmic segment of the ICA. Some brain areas received up to 11 times the expected radiotracer delivery, while other regions received as little as one-tenth. This streaming pattern was markedly reduced or eliminated by DPPI. In the five patients who received infraophthalmic infusions, a minimally heterogeneous distribution of the infusate was detected. The authors conclude that extensive intravascular streaming accompanies supraophthalmic ICA infusions in patients. The magnitude of streaming can be substantially reduced or eliminated with DPPI. Those who perform intra-arterial infusion should consider using DPPI to assure uniform drug delivery to brain.