Browse

You are looking at 1 - 10 of 20 items for

  • By Author: Oldfield, Edward H. x
  • By Author: Heiss, John D. x
Clear All
Restricted access

John D. Heiss, Giancarlo Suffredini, Kamran D. Bakhtian, Malisa Sarntinoranont and Edward H. Oldfield

Object

Chiari malformation Type I (CM-I) is characterized by hindbrain deformity. We investigated the effects of craniocervical decompression surgery on the anatomical features of hindbrain deformity with a prospective MRI study of patients with CM-I.

Methods

A prospective longitudinal study was conducted in 48 patients with CM-I (39 with syringomyelia) treated with craniocervical decompression. Clinical examinations and cervical MRI were performed before surgery and 1 week, 3–6 months, and annually after surgery. Hindbrain deformity was defined by tonsillar ectopia, pointed cerebellar tonsils, and/or cervicomedullary protuberance. The length of the clivus, basiocciput (sphenooccipital synchondrosis to basion), supraocciput (internal occipital protuberance to opisthion), and anteroposterior (AP) width of CSF pathways at the foramen magnum were measured and compared with those from 18 healthy volunteers (control group).

Results

Before surgery, the patients' posterior fossa bones were short and their CSF pathways were narrow. All patients had tonsillar ectopia (mean [± SD] 12.3 ± 5.1 mm; normal 0.3 ± 1.0). The majority of patients had pointed tonsils and more than two-thirds exhibited a cervicomedullary protuberance. Clivus and basiocciput lengths were significantly shorter than the values obtained in the control group. However, the supraocciput length did not differ significantly from control measurements. The mean bulbopontine sulcus distance superior to the basion was 9.5 ± 2.6 mm (vs 13.6 ± 2.8 mm in controls; p < 0.0001). The AP widths of the CSF pathways at the level of the foramen magnum were significantly narrowed. After surgery, CSF pathways significantly expanded both ventrally and dorsally. By 3–6 months after surgery, pointed tonsils became round, cervicomedullary protuberance disappeared, and tonsillar ectopia diminished by 51% (to 6.0 ± 3.3 mm; p < 0.0001).

Conclusions

The cerebellar tonsils and brainstem assumed a normal appearance within 6 months after craniocervical decompression. These findings support the concept that the CM-I is not a congenital malformation of the neural elements but rather an acquired malformation that arises from pulsatile impaction of the cerebellar tonsils into the foramen magnum. Clinical trial registration no.: NCT00001327.

Free access

John D. Heiss, Kendall Snyder, Matthew M. Peterson, Nicholas J. Patronas, John A. Butman, René K. Smith, Hetty L. DeVroom, Charles A. Sansur, Eric Eskioglu, William A. Kammerer and Edward H. Oldfield

Object

The pathogenesis of syringomyelia in patients with an associated spinal lesion is incompletely understood. The authors hypothesized that in primary spinal syringomyelia, a subarachnoid block effectively shortens the length of the spinal subarachnoid space (SAS), reducing compliance and the ability of the spinal theca to dampen the subarachnoid CSF pressure waves produced by brain expansion during cardiac systole. This creates exaggerated spinal subarachnoid pressure waves during every heartbeat that act on the spinal cord above the block to drive CSF into the spinal cord and create a syrinx. After a syrinx is formed, enlarged subarachnoid pressure waves compress the external surface of the spinal cord, propel the syrinx fluid, and promote syrinx progression.

Methods

To elucidate the pathophysiology, the authors prospectively studied 36 adult patients with spinal lesions obstructing the spinal SAS. Testing before surgery included clinical examination; evaluation of anatomy on T1-weighted MRI; measurement of lumbar and cervical subarachnoid mean and pulse pressures at rest, during Valsalva maneuver, during jugular compression, and after removal of CSF (CSF compliance measurement); and evaluation with CT myelography. During surgery, pressure measurements from the SAS above the level of the lesion and the lumbar intrathecal space below the lesion were obtained, and cardiac-gated ultrasonography was performed. One week after surgery, CT myelography was repeated. Three months after surgery, clinical examination, T1-weighted MRI, and CSF pressure recordings (cervical and lumbar) were repeated. Clinical examination and MRI studies were repeated annually thereafter. Findings in patients were compared with those obtained in a group of 18 healthy individuals who had already undergone T1-weighted MRI, cine MRI, and cervical and lumbar subarachnoid pressure testing.

Results

In syringomyelia patients compared with healthy volunteers, cervical subarachnoid pulse pressure was increased (2.7 ± 1.2 vs 1.6 ± 0.6 mm Hg, respectively; p = 0.004), pressure transmission to the thecal sac below the block was reduced, and spinal CSF compliance was decreased. Intraoperative ultrasonography confirmed that pulse pressure waves compressed the outer surface of the spinal cord superior to regions of obstruction of the subarachnoid space.

Conclusions

These findings are consistent with the theory that a spinal subarachnoid block increases spinal subarachnoid pulse pressure above the block, producing a pressure differential across the obstructed segment of the SAS, which results in syrinx formation and progression. These findings are similar to the results of the authors' previous studies that examined the pathophysiology of syringomyelia associated with obstruction of the SAS at the foramen magnum in the Chiari Type I malformation and indicate that a common mechanism, rather than different, separate mechanisms, underlies syrinx formation in these two entities. Clinical trial registration no.: NCT00011245.

Restricted access

Han Soo Chang, Tsukasa Tsuchiya and Toru Matsui

Restricted access

Editorial

Chiari malformation Type I

Mark M. Souweidane

Restricted access

John D. Heiss, Giancarlo Suffredini, René Smith, Hetty L. DeVroom, Nicholas J. Patronas, John A. Butman, Francine Thomas and Edward H. Oldfield

Object

Craniocervical decompression for Chiari malformation Type I (CM-I) and syringomyelia has been reported to fail in 10%–40% of patients. The present prospective clinical study was designed to test the hypothesis that in cases in which syringomyelia persists after surgery, craniocervical decompression relieves neither the physiological block at the foramen magnum nor the mechanism of syringomyelia progression.

Methods

The authors prospectively evaluated and treated 16 patients with CM-I who had persistent syringomyelia despite previous craniocervical decompression. Testing before surgery included the following: 1) clinical examination; 2) evaluation of the anatomy using T1-weighted MR imaging; 3) assessment of the syrinx and CSF velocity and flow using cine phase-contrast MR imaging; and 4) appraisal of the lumbar and cervical subarachnoid pressures at rest, during a Valsalva maneuver, during jugular compression, and following the removal of CSF (CSF compliance measurement). During surgery, ultrasonography was performed to observe the motion of the cerebellar tonsils and syrinx walls; pressure measurements were obtained from the intracranial and lumbar intrathecal spaces. The surgical procedure involved enlarging the previous craniectomy and performing an expansile duraplasty with autologous pericranium. Three to 6 months after surgery, clinical examination, MR imaging, and CSF pressure recordings were repeated. Clinical examination and MR imaging studies were then repeated annually.

Results

Before reexploration, patients had a decreased size of the CSF pathways and a partial blockage in CSF transmission at the foramen magnum. Cervical subarachnoid pressure and pulse pressure were abnormally elevated. During surgery, ultrasonographic imaging demonstrated active pulsation of the cerebellar tonsils, with the tonsils descending during cardiac systole and concomitant narrowing of the upper pole of the syrinx. Three months after reoperation, patency of the CSF pathways was restored and pressure transmission was improved. The flow of syrinx fluid and the diameter of the syrinx decreased after surgery in 15 of 16 patients.

Conclusions

Persistent blockage of the CSF pathways at the foramen magnum resulted in increased pulsation of the cerebellar tonsils, which acted on a partially enclosed cervical subarachnoid space to create elevated cervical CSF pressure waves, which in turn affected the external surface of the spinal cord to force CSF into the spinal cord through the Virchow-Robin spaces and to propel the syrinx fluid caudally, leading to syrinx progression. A surgical procedure that reestablished the CSF pathways at the foramen magnum reversed this pathophysiological mechanism and resolved syringomyelia. Elucidating the pathophysiology of persistent syringomyelia has implications for its primary and secondary treatment.

Restricted access

Oral Presentations

2010 AANS Annual Meeting Philadelphia, Pennsylvania May 1–5, 2010

Restricted access

Nicholas M. Wetjen, John D. Heiss and Edward H. Oldfield

Object

To better understand syrinx pathophysiology, the authors performed a prospective study in which they used findings from serial clinical and magnetic resonance (MR) imaging examinations performed before and after craniocervical decompression to establish the time course of syrinx narrowing.

Methods

Serial clinical examinations and cervical MR imaging were performed in 29 consecutive patients with Chiari malformation Type I (CM-I) and syringomyelia before surgery, 1 week, and 3–6 months after surgery, and then annually. Time to narrowing of the syrinx (> 50% decrease in maximal anteroposterior diameter) following surgery was calculated using the Kaplan–Meier method.

Results

All syringes decreased in diameter and length (number of segments) on MR images at 3–6 months, 1 year, and 2 years or later. The syrinx diameter decreased from 6.9 ± 2.1 mm (mean ± standard deviation) preoperatively to < 1.5 mm at last evaluation (p < 0.0001). The median time to syrinx narrowing was 3.6 months following CM-I decompression (95% confidence interval 3.0–6.5 months). After surgery 94% of patients had improved symptoms, but symptoms resolved incompletely in 68% of patients; 52 and 59% of patients had residual dysesthesias and sensory loss, respectively. Clinical improvement occurred before partial or complete disappearance of the syrinx on MR images. Patient age, duration of symptoms, sex, preoperative syrinx diameter, and length of syrinx were unrelated to time to syrinx narrowing.

Conclusions

Most patients improve after decompression for CM-I, but many have residual symptoms. Syringes may continue to diminish for months to years after surgical decompression. A collapsed syrinx (absence of distention of the spinal cord) indicates that the pathophysiology has been reversed by treatment regardless of the completeness of elimination of the cavity on MR images.

Restricted access

John D. Heiss, Stuart Walbridge, Paul Morrison, Robert R. Hampton, Susumu Sato, Alexander Vortmeyer, John A. Butman, James O'Malley, Param Vidwan, Robert L. Dedrick and Edward H. Oldfield

Object. The activity of γ-aminobutyric acid (GABA), the principal inhibitory neurotransmitter, is reduced in the hippocampus in patients with complex partial seizures from mesial temporal sclerosis. To provide preliminary safety and distribution data on using convection-enhanced delivery of agents to treat complex partial seizures and to test the efficacy and safety of regional selective neuronal suppression, the authors infused muscimol, a GABA-A receptor agonist, directly into the hippocampus of nonhuman primates using an integrated catheter electrode.

Methods. Ten rhesus monkeys were divided into three groups: 1) use of catheter electrode alone (four monkeys); 2) infusion of escalating concentrations of muscimol followed by vehicle (three monkeys); and 3) infusion of vehicle and subsequent muscimol mixed with muscimol tracer (three monkeys). Infusions were begun 5 days after catheter electrode placement and continued for 5.6 days before switching to the other agent. Head magnetic resonance (MR) images and electroencephalography recordings were obtained before and during the infusions. Brain histological studies and quantitative autoradiography were performed.

Neurological function was normal in controls and when muscimol concentrations were 0.125 mM or less, whereas higher concentrations (0.5 and 1 mM) produced reversible apathy and somnolence. Fluid distribution was demonstrated on MR images and muscimol distribution was demonstrated on autoradiographs throughout the hippocampus and adjacent white matter.

Conclusions. Targeted modulation of neuronal activity is a reasonable research strategy for the investigation and treatment of medically intractable epilepsy.

Restricted access

Alexander M. Gorbach, John D. Heiss, Leonid Kopylev and Edward H. Oldfield

Object. Although clinical imaging defines the anatomical relationship between a brain tumor and the surrounding brain and neurological deficits indicate the neurophysiological consequences of the tumor, the effect of a brain tumor on vascular physiology is less clear.

Methods. An infrared camera was used to measure the temperature of the cortical surface before, during, and after removal of a mass in 34 patients (primary brain tumor in 21 patients, brain metastases in 10 and falx meningioma, cavernous angioma, and radiation necrosis—astrocytosis in one patient each). To establish the magnitude of the effect on blood flow induced by the tumor, the images were compared with those from a group of six patients who underwent temporal lobectomy for epilepsy. In four cases a cerebral artery was temporarily occluded during the course of the surgery and infrared emissions from the cortex before and after occlusion were compared to establish the relationship of local temperature to regional blood flow.

Discrete temperature gradients were associated with surgically verified lesions in all cases. Depending on the type of tumor, the cortex overlying the tumor was either colder or warmer than the surrounding cortex. Spatial reorganization of thermal gradients was observed after tumor resection. Temperature gradients of the cortex in patients with tumors exceeded those measured in the cortex of patients who underwent epilepsy surgery.

Conclusions. Brain tumors induce changes in cerebral blood flow (CBF) in the cortex, which can be made visible by performing infrared imaging during cranial surgery. A reduction in CBF beyond the tumor margin improves after removal of the lesion.