Browse

You are looking at 1 - 3 of 3 items for

  • By Author: Oldfield, Edward H. x
  • By Author: Friedman, Robert x
Clear All
Restricted access

Jeffrey J. Olson, Robert Friedman, Kathryn Orr, Thomas Delaney and Edward H. Oldfield

✓ Pentobarbital reduces cerebral radiation toxicity; however, the mechanism of this phenomenon remains unknown. As an anesthetic and depressant of cerebral metabolism, pentobarbital induces its effects on the central nervous system by stimulating the binding of gamma-aminobutyric acid (GABA) to its receptor and by inhibiting postsynaptic excitatory amino acid activity. The purpose of this study is to investigate the role of these actions as well as other aspects of the radioprotective activity of pentobarbital.

Fischer 344 rats were separated into multiple groups and underwent two dose-response evaluations. In one set of experiments to examine the relationship of radioprotection to pentobarbital dose, a range of pentobarbital doses (0 to 75 mg/kg) were given intraperitoneally prior to a constant-level radiation dose (70 Gy). In a second series of experiments to determine the dose-response relationship of radiation protection to radiation dose, a range of radiation doses (10 to 90 Gy) were given with a single pentobarbital dose (60 mg/kg intraperitoneally). Further groups of animals were used to evaluate the importance of the timing of pentobarbital administration, the function of the (+) and (−) isomers of pentobarbital, and the role of an alternative GABA agonist (diazepam). In addition, the potential protective effects of alternative methods of anesthesia (ketamine) and induction of cerebral hypometabolism (hypothermia) were examined.

Enhancement of survival time from acute radiation injury due to high-dose single-fraction whole-brain irradiation was maximal with 60 mg/kg of pentobarbital, and occurred over the range of all doses examined between 30 to 90 Gy. Protection was seen only in animals that received the pentobarbital before irradiation. Administration of other compounds that enhance GABA binding (Saffan and diazepam) also significantly enhanced survival time. Ketamine and hypothermia were without protective effect.

Protection from acute radiation-induced mortality by pentobarbital in the rat model is a reproducible phenomenon and is associated with the GABA agonistic activity of the compound. This property of GABA agonists offers the potential for a novel approach to enhancement of the efficacy of radiation therapy in the treatment of brain tumors.

Restricted access

Jeffrey J. Olson, Robert Friedman, Kathryn Orr, Thomas Delaney and Edward H. Oldfield

✓ Radiation therapy is an important component of brain tumor treatment, but its efficacy is limited by its toxicity to the surrounding normal tissue. Pentobarbital acts as a cerebral radioprotectant, but the selectivity of its protection for the central nervous system has not been demonstrated. To determine if pentobarbital also protects tumor against ionizing radiation, five groups of Fischer 344 rats were observed after exposure to varying combinations of the presence or absence of implanted tumor, pentobarbital, and radiation treatment. The first three groups underwent cerebral implantations of a suspension of 9L gliosarcoma cells. Group 1 was left untreated and served as tumor-bearing controls. Group 2 received 30 Gy of whole-brain x-irradiation without anesthesia 8 days after tumor implantation. Group 3 received the same radiation treatment 15 minutes after pretreatment with 60 mg/kg of pentobarbital intraperitoneally. Groups 4 and 5 served as radiation controls, receiving 30 Gy of x-irradiation while awake and 30 Gy of x-irradiation after pentobarbital administration, respectively. Survival was calculated from the death of the last tumor-bearing rat.

The mean survival time in tumor-bearing control rats was 20.8 ± 2.6 days (± standard deviation). X-irradiation alone significantly enhanced the period of survival in rats implanted with the 9L tumor (29.7 ± 5.6 days, p < 0.003). Further significant prolongation of survival was seen with the addition of pentobarbital to the treatment regimen (39.9 ± 13.5 days, p < 0.01). Nontumor-bearing rats irradiated while awake (Group 4) survived 30.9 ± 2.3 days. All of their pentobarbital-anesthetized counterparts in Group 5 survived. If pentobarbital had offered radioprotection to the tumor, then Group 3 would have had a shorter survival period than Group 2. This implies that the enhancement of survival time after irradiation results from selective protection of normal brain in this model.

Restricted access

Edward H. Oldfield, Robert Friedman, Timothy Kinsella, Ross Moquin, Jeffrey J. Olson, Kathryn Orr and Anne Marie DeLuca

✓ To determine if barbiturates would protect brain at high doses of radiation, survival rates in rats that received whole-brain x-irradiation during pentobarbital- or lidocaine-induced anesthesia were compared with those of control animals that received no medication and of animals anesthetized with ketamine. The animals were shielded so that respiratory and digestive tissues would not be damaged by the radiation. Survival rates in rats that received whole-brain irradiation as a single 7500-rad dose under pentobarbital- or lidocaine-induced anesthesia was increased from between from 0% and 20% to between 45% and 69% over the 40 days of observation compared with the other two groups (p < 0.007). Ketamine anesthesia provided no protection. There were no notable differential effects upon non-neural tissues, suggesting that pentobarbital afforded protection through modulation of ambient neural activity during radiation exposure.

Neural suppression during high-dose cranial irradiation protects brain from acute and early delayed radiation injury. Further development and application of this knowledge may reduce the incidence of radiation toxicity of the central nervous system (CNS) and may permit the safe use of otherwise “unsafe” doses of radiation in patients with CNS neoplasms.