Browse

You are looking at 1 - 10 of 10 items for

  • By Author: Nakaji, Peter x
  • By Author: Martirosyan, Nikolay L. x
Clear All
Restricted access

Evgenii Belykh, Kaan Yağmurlu, Ting Lei, Sam Safavi-Abbasi, Mark E. Oppenlander, Nikolay L. Martirosyan, Vadim A. Byvaltsev, Robert F. Spetzler, Peter Nakaji and Mark C. Preul

OBJECTIVE

The best approach to deep-seated lateral and third ventricle lesions is a function of lesion characteristics, location, and relationship to the ventricles. The authors sought to examine and compare angles of attack and surgical freedom of anterior ipsilateral and contralateral interhemispheric transcallosal approaches to the frontal horn of the lateral ventricle using human cadaveric head dissections. Illustrative clinical experiences with a contralateral interhemispheric transcallosal approach and an anterior interhemispheric transcallosal transchoroidal approach are also related.

METHODS

Five formalin-fixed human cadaveric heads (10 sides) were examined microsurgically. CT and MRI scans obtained before dissection were uploaded and fused into the navigation system. The authors performed contralateral and ipsilateral transcallosal approaches to the lateral ventricle. Using the navigation system, they measured areas of exposure, surgical freedom, angles of attack, and angle of view to the surgical surface. Two clinical cases are described.

RESULTS

The exposed areas of the ipsilateral (mean [± SD] 313.8 ± 85.0 mm2) and contralateral (344 ± 87.73 mm2) interhemispheric approaches were not significantly different (p = 0.12). Surgical freedom and vertical angles of attack were significantly larger for the contralateral approach to the most midsuperior reachable point (p = 0.02 and p = 0.01, respectively) and to the posterosuperior (p = 0.02 and p = 0.04) and central (p = 0.04 and p = 0.02) regions of the lateral wall of the lateral ventricle. Surgical freedom and vertical angles of attack to central and anterior points on the floor of the lateral ventricle did not differ significantly with approach. The angle to the surface of the caudate head region was less steep for the contralateral (135.6° ± 15.6°) than for the ipsilateral (152.0° ± 13.6°) approach (p = 0.02).

CONCLUSIONS

The anterior contralateral interhemispheric transcallosal approach provided a more expansive exposure to the lower two-thirds of the lateral ventricle and striothalamocapsular region. In normal-sized ventricles, the foramen of Monro and the choroidal fissure were better visualized through the lateral ventricle ipsilateral to the craniotomy than through the contralateral approach.

Full access

M. Yashar S. Kalani, John E. Wanebo, Nikolay L. Martirosyan, Peter Nakaji, Joseph M. Zabramski and Robert F. Spetzler

Free access

Nikolay L. Martirosyan, Jennifer M. Eschbacher, M. Yashar S. Kalani, Jay D. Turner, Evgenii Belykh, Robert F. Spetzler, Peter Nakaji and Mark C. Preul

OBJECTIVE

This study evaluated the utility, specificity, and sensitivity of intraoperative confocal laser endomicroscopy (CLE) to provide diagnostic information during resection of human brain tumors.

METHODS

CLE imaging was used in the resection of intracranial neoplasms in 74 consecutive patients (31 male; mean age 47.5 years; sequential 10-month study period). Intraoperative in vivo and ex vivo CLE was performed after intravenous injection of fluorescein sodium (FNa). Tissue samples from CLE imaging–matched areas were acquired for comparison with routine histological analysis (frozen and permanent sections). CLE images were classified as diagnostic or nondiagnostic. The specificities and sensitivities of CLE and frozen sections for gliomas and meningiomas were calculated using permanent histological sections as the standard.

RESULTS

CLE images were obtained for each patient. The mean duration of intraoperative CLE system use was 15.7 minutes (range 3–73 minutes). A total of 20,734 CLE images were correlated with 267 biopsy specimens (mean number of images/biopsy location, in vivo 84, ex vivo 70). CLE images were diagnostic for 45.98% in vivo and 52.97% ex vivo specimens. After initiation of CLE, an average of 14 in vivo images and 7 ex vivo images were acquired before identification of a first diagnostic image. CLE specificity and sensitivity were, respectively, 94% and 91% for gliomas and 93% and 97% for meningiomas.

CONCLUSIONS

CLE with FNa provided intraoperative histological information during brain tumor removal. Specificities and sensitivities of CLE for gliomas and meningiomas were comparable to those for frozen sections. These data suggest that CLE could allow the interactive identification of tumor areas, substantially improving intraoperative decisions during the resection of brain tumors.

Free access

Nikolay L. Martirosyan, M. Yashar S. Kalani, Peter Nakaji and Robert F. Spetzler

The anterior interhemispheric approach is a workhorse for treatment of lesions in the third ventricle. In this case, we demonstrate the utility of this approach for resecting a complex third ventricular cavernous malformation. We discuss patient positioning, optimal location of the craniotomy, and surgical resection techniques for safe removal of these lesions. We also demonstrate the importance of gravity retraction using the falx to prevent injury to the dominant frontal lobe.

The video can be found here: https://youtu.be/38woc28er7M.

Free access

M. Yashar S. Kalani, Ting Lei, Nikolay L. Martirosyan, Mark E. Oppenlander, Robert F. Spetzler and Peter Nakaji

The mesial temporal lobe can be approached via a pterional or orbitozygomatic craniotomy, the subtemporal approach, or transcortically. Alternatively, the entire mesial temporal lobe can be accessed using a lateral supracerebellar transtentorial (SCTT) approach. Here we describe the technical nuances of patient positioning, craniotomy, supracerebellar dissection, and tentorial disconnection to traverse the tentorial incisura to arrive at the posterior mesial temporal lobe for a cavernous malformation. The SCTT approach is especially useful for lesions in the dominant temporal lobe where an anterolateral approach may endanger language centers or the vein of Labbé.

The video can be found here: https://youtu.be/D8mIR5yeiVw.

Free access

M. Yashar S. Kalani, Nikolay L. Martirosyan, Peter Nakaji and Robert F. Spetzler

The supracerebellar infratentorial approach provides access to the dorsal midbrain, pineal region, and tentorial incisura. This approach can be used with the patient in a sitting, prone, park-bench, or supine position. For a patient with a supple neck and favorable anatomy, we prefer the supine position. The ipsilateral shoulder is elevated, the head turned to the contralateral side, the chin is tucked, and the neck extended toward the floor to open the craniocervical angle for added working room. Care must be taken to place the craniotomy laterally to make use of the ascending angle of the tentorium for ease of access to deep-seated lesions.

The video can be found here: https://youtu.be/BZh6ljmE23k.

Free access

Joseph Georges, Aqib Zehri, Elizabeth Carlson, Joshua Nichols, Michael A. Mooney, Nikolay L. Martirosyan, Layla Ghaffari, M. Yashar S. Kalani, Jennifer Eschbacher, Burt Feuerstein, Trent Anderson, Mark C. Preul, Kendall Van Keuren-Jensen and Peter Nakaji

Glioblastoma is the most common primary brain tumor with a median 12- to 15-month patient survival. Improving patient survival involves better understanding the biological mechanisms of glioblastoma tumorigenesis and seeking targeted molecular therapies. Central to furthering these advances is the collection and storage of surgical biopsies (biobanking) for research. This paper addresses an imaging modality, confocal reflectance microscopy (CRM), for safely screening glioblastoma biopsy samples prior to biobanking to increase the quality of tissue provided for research and clinical trials. These data indicate that CRM can immediately identify cellularity of tissue biopsies from animal models of glioblastoma. When screening fresh human biopsy samples, CRM can differentiate a cellular glioblastoma biopsy from a necrotic biopsy without altering DNA, RNA, or protein expression of sampled tissue. These data illustrate CRM's potential for rapidly and safely screening clinical biopsy samples prior to biobanking, which demonstrates its potential as an effective screening technique that can improve the quality of tissue biobanked for patients with glioblastoma.

Free access

Nikolay L. Martirosyan, Joseph Georges, Jennifer M. Eschbacher, Daniel D. Cavalcanti, Ali M. Elhadi, Mohammed G. Abdelwahab, Adrienne C. Scheck, Peter Nakaji, Robert F. Spetzler and Mark C. Preul

Object

The authors sought to assess the feasibility of a handheld visible-wavelength confocal endomicroscope imaging system (Optiscan 5.1, Optiscan Pty., Ltd.) using a variety of rapid-acting fluorophores to provide histological information on gliomas, tumor margins, and normal brain in animal models.

Methods

Mice (n = 25) implanted with GL261 cells were used to image fluorescein sodium (FNa), 5-aminolevulinic acid (5-ALA), acridine orange (AO), acriflavine (AF), and cresyl violet (CV). A U251 glioma xenograft model in rats (n = 5) was used to image sulforhodamine 101 (SR101). A swine (n = 3) model with AO was used to identify confocal features of normal brain. Images of normal brain, obvious tumor, and peritumoral zones were collected using the handheld confocal endomicroscope. Histological samples were acquired through biopsies from matched imaging areas. Samples were visualized with a benchtop confocal microscope. Histopathological features in corresponding confocal images and photomicrographs of H & E–stained tissues were reviewed.

Results

Fluorescence induced by FNa, 5-ALA, AO, AF, CV, and SR101 and detected with the confocal endomicroscope allowed interpretation of histological features. Confocal endomicroscopy revealed satellite tumor cells within peritumoral tissue, a definitive tumor border, and striking fluorescent cellular and subcellular structures. Fluorescence in various tumor regions correlated with standard histology and known tissue architecture. Characteristic features of different areas of normal brain were identified as well.

Conclusions

Confocal endomicroscopy provided rapid histological information precisely related to the site of microscopic imaging with imaging characteristics of cells related to the unique labeling features of the fluorophores. Although experimental with further clinical trial validation required, these data suggest that intraoperative confocal imaging can help to distinguish normal brain from tumor and tumor margin and may have application in improving intraoperative decisions during resection of brain tumors.

Restricted access

Jennifer Eschbacher, Nikolay L. Martirosyan, Peter Nakaji, Nader Sanai, Mark C. Preul, Kris A. Smith, Stephen W. Coons and Robert F. Spetzler

Object

Frozen-section analysis is the current standard for the intraoperative diagnosis of brain tumors. Intraoperative confocal microscopy is an emerging technology with the potential to visualize tumor histopathological features and cell morphology in real time. The authors report their findings using this new intraoperative technology in vivo with sodium fluorescein contrast during the course of 50 microsurgical tumor resections.

Methods

Eighty-eight regions were visualized with confocal microscopy, and corresponding biopsy samples were examined with routine neuropathological analysis. The tumors studied included meningiomas, schwannomas, gliomas of various grades, and a hemangioblastoma. The confocal microscopic features of each tumor and of various artifacts inherent to the technology were documented. A pathologist working in a blinded fashion reviewed a subset of the images in a further evaluation of the usefulness of the device as a diagnostic tool.

Results

Overall, intraoperative confocal imaging correlated surprisingly well with corresponding traditional histological findings, including the identification of many pathognomonic cytoarchitectural features of various brain tumors. In the blinded study, 26 (92.9%) of 28 lesions were diagnosed correctly.

Conclusions

Further study will be necessary for better definition of the role of intraoperative confocal microscopy as a routine adjunct for intraoperative brain tumor diagnosis.

Restricted access

Nikolay L. Martirosyan, Daniel D. Cavalcanti, Jennifer M. Eschbacher, Peter M. Delaney, Adrienne C. Scheck, Mohammed G. Abdelwahab, Peter Nakaji, Robert F. Spetzler and Mark C. Preul

Object

Infiltrative tumor resection is based on regional (macroscopic) imaging identification of tumorous tissue and the attempt to delineate invasive tumor margins in macroscopically normal-appearing tissue, while preserving normal brain tissue. The authors tested miniaturized confocal fiberoptic endomicroscopy by using a near-infrared (NIR) imaging system with indocyanine green (ICG) as an in vivo tool to identify infiltrating glioblastoma cells and tumor margins.

Methods

Thirty mice underwent craniectomy and imaging in vivo 14 days after implantation with GL261-luc cells. A 0.4 mg/kg injection of ICG was administered intravenously. The NIR images of normal brain, obvious tumor, and peritumoral zones were collected using the handheld confocal endomicroscope probe. Histological samples were acquired from matching imaged areas for correlation of tissue images.

Results

In vivo NIR wavelength confocal endomicroscopy with ICG detects fluorescence of tumor cells. The NIR and ICG macroscopic imaging performed using a surgical microscope correlated generally to tumor and peritumor regions, but NIR confocal endomicroscopy performed using ICG revealed individual tumor cells and satellites within peritumoral tissue; a definitive tumor border; and striking fluorescent microvascular, cellular, and subcellular structures (for example, mitoses, nuclei) in various tumor regions correlating with standard clinical histological features and known tissue architecture.

Conclusions

Macroscopic fluorescence was effective for gross tumor detection, but NIR confocal endomicroscopy performed using ICG enhanced sensitivity of tumor detection, providing real-time true microscopic histological information precisely related to the site of imaging. This first-time use of such NIR technology to detect cancer suggests that combined macroscopic and microscopic in vivo ICG imaging could allow interactive identification of microscopic tumor cell infiltration into the brain, substantially improving intraoperative decisions.