You are looking at 1 - 2 of 2 items for

  • By Author: Meyer, Fredric B. x
  • By Author: Goerss, Stephan J. x
Clear All
Restricted access

Robert D. Ecker, Stephan J. Goerss, Fredric B. Meyer, Aaron A. Cohen-Gadol, Jeffrey W. Britton and James A. Levine

✓ High-resolution dynamic infrared (DIR) imaging provides intraoperative real-time physiological, anatomical, and pathological information; however, DIR imaging has rarely been used in neurosurgical patients. The authors report on their initial experience with intraoperative DIR imaging in 30 such patients.

A novel, long-wave (8–10 µm), narrow-band, focal-plane-array infrared photodetector was incorporated into a camera system with a temperature resolution of 0.006°C, providing 65,000 pixels/frame at a data acquisition rate of 200 frames/second. Intraoperative imaging of patients was performed before and after surgery. Infrared data were subsequently analyzed by examining absolute differences in cortical temperatures, changes in temperature over time, and infrared intensities at varying physiological frequencies.

Dynamic infrared imaging was applied in a variety of neurosurgical cases. After resection of an arteriovenous malformation, there was postoperative hyperperfusion of the surrounding brain parenchyma, which was consistent with a loss of autoregulation. Bypass patency and increased perfusion of adjacent brain were documented during two of three extracranial—intracranial bypasses. In seven of nine patients with epilepsy the results of DIR imaging corresponded to seizure foci that had been electrocorticographically mapped preoperatively. Dynamic infrared imaging demonstrated the functional cortex in four of nine patients undergoing awake resection and cortical stimulation. Finally, DIR imaging exhibited the distinct thermal footprints of 14 of 16 brain tumors.

Dynamic infrared imaging may prove to be a powerful adjunctive intraoperative diagnostic tool in the neurosurgical imaging armamentarium. Real-time assessment of cerebral vessel patency and cerebral perfusion are the most direct applications of this technology. Uses of this imaging modality in the localization of epileptic foci, identification of functional cortex during awake craniotomy, and determination of tumor border and intraoperative brain shift are avenues of inquiry that require further investigation.

Restricted access

Jonathan A. Friedman, Stephan J. Goerss, Fredric B. Meyer, David G. Piepgras, Mark A. Pichelmann, Jon I. McIver, L. Gerard Toussaint III, Robyn L. McClelland, Douglas A. Nichols, John L. D. Atkinson and Eelco F. M. Wijdicks

Object. Predicting which patients with aneurysmal subarachnoid hemorrhage (SAH) will develop delayed ischemic neurological deficit (DIND) due to vasospasm remains subjective and unreliable. The authors analyzed the utility of a novel software-based technique to quantify hemorrhage volume in patients with Fisher Grade 3 aneurysmal SAH.

Methods. Patients with aneurysmal SAH in whom a computerized tomography (CT) scan was performed within 72 hours of ictus and demonstrated Fisher Grade 3 SAH were analyzed. Severe DIND was defined as new onset complete focal deficit or coma. Moderate DIND was defined as new onset partial focal deficit or impaired consciousness without coma. Fifteen consecutive patients with severe DIND, 13 consecutive patients with moderate DIND, and 12 consecutive patients without DIND were analyzed. Software-based volumetric quantification was performed on digitized admission CT scans by a single examiner blinded to clinical information.

There was no significant difference in age, sex, admission Hunt and Hess grade, or time to admission CT scan among the three groups (none, moderate, or severe DIND). Patients with severe DIND had a significantly higher cisternal volume of hemorrhage (median 30.5 cm3) than patients with moderate DIND (median 12.4 cm3) and patients without DIND (median 10.3 cm3; p < 0.001). Intraparenchymal hemorrhage and intraventricular hemorrhage were not associated with DIND. All 13 patients with cisternal volumes greater than 20 cm3 developed DIND, compared with 15 of 27 patients with volumes less than 20 cm3 (p = 0.004).

Conclusions. The authors developed a simple and potentially widely applicable method to quantify SAH on CT scans. A greater volume of cisternal hemorrhage on an admission CT scan in patients with Fisher Grade 3 aneurysmal SAH is highly associated with DIND. A threshold of cisternal hemorrhage volume (> 20 cm3) may exist above which patients are very likely to develop DIND. Prospective application of software-based volumetric quantification of cisternal SAH may predict which patients will develop DIND.