Browse

You are looking at 1 - 4 of 4 items for

  • By Author: Luerssen, Thomas G. x
  • By Author: Chamoun, Roukoz B. x
Clear All
Restricted access

Joshua J. Chern, Roukoz B. Chamoun, William E. Whitehead, Daniel J. Curry, Thomas G. Luerssen and Andrew Jea

Object

The management of upper cervical spinal instability in children continues to represent a technical challenge. Traditionally, a number of wiring techniques followed by halo orthosis have been applied; however, they have been associated with a high rate of nonunion and poor tolerance for the halo. Alternatively, C1–2 transarticular screws and C-2 pars/pedicle screws allow more rigid fixation, but their placement is technically demanding and associated with vertebral artery injuries. Recently, C-2 translaminar screws have been added to the armamentarium of the pediatric spine surgeon as a technically simple and biomechanically efficient means of fixation. However, the use of subaxial translaminar screws have not been described in the general pediatric population. There are no published data that describe the anatomical considerations and potential limitations of this technique in the pediatric population.

Methods

The cervical vertebrae of 69 pediatric patients were studied on CT scans. Laminar height and thickness were measured. Statistical analysis was performed using unpaired Student t-tests (p < 0.05) and linear regression analysis.

Results

The mean laminar heights at C-2, C-3, C-4, C-5, C-6, and C-7, respectively, were 9.76 ± 2.22 mm, 8.22 ± 2.24 mm, 8.09 ± 2.38 mm, 8.51 ± 2.34 mm, 9.30 ± 2.54 mm, and 11.65 ± 2.65 mm. Mean laminar thickness at C-2, C-3, C-4, C-5, C-6, and C-7, respectively, were 5.07 ± 1.07 mm, 2.67 ± 0.79 mm, 2.18 ± 0.73 mm, 2.04 ± 0.60 mm, 2.52 ± 0.66 mm, and 3.84 ± 0.96 mm. In 50.7% of C-2 laminae, the anatomy could accept at least 1 translaminar screw (laminar thickness ≥ 4 mm).

Conclusions

Overall, the anatomy in 30.4% of patients younger than 16 years old could accept bilateral C-2 translaminar screws. However, the anatomy of the subaxial cervical spine only rarely could accept translaminar screws. This study establishes anatomical guidelines to allow for accurate and safe screw selection and insertion. Preoperative planning with thin-cut CT and sagittal reconstruction is essential for safe screw placement using this technique.

Restricted access

Roukoz B. Chamoun, William E. Whitehead, Daniel J. Curry, Thomas G. Luerssen and Andrew Jea

Object

The use of C-1 lateral mass screws provides an alternative to C1–2 transarticular screws in the pediatric population. However, the confined space of the local anatomy and unfamiliarity with the technique may make the placement of a C-1 lateral mass screw more challenging, especially in the juvenile or growing spine.

Methods

A CT morphometric analysis was performed in 76 pediatric atlases imaged at Texas Children's Hospital from October 1, 2007 until April 30, 2008. Critical measurements were determined for potential screw entry points, trajectories, and lengths, with the goal of replicating the operative technique described by Harms and Melcher for adult patients.

Results

The mean height and width for screw entry on the posterior surface of the lateral mass were 2.6 and 8.5 mm, respectively. The mean medially angled screw trajectory from an idealized entry point on the lateral mass was 16° (range 4 to 27°). The mean maximal screw depth from this same ideal entry point was 20.3 mm. The overhang of the posterior arch averaged 6.3 mm (range 2.1–12.4 mm). The measurement between the left- and right-side lateral masses was significantly different for the maximum medially angled screw trajectory (p = 0.003) and the maximum inferiorly directed angle (p = 0.045). Those measurements in children < 8 years of age were statistically significant for the entry point height (p = 0.038) and maximum laterally angled screw trajectory (p = 0.025) compared with older children. The differences between boys and girls were statistically significant for the minimum screw length (p = 0.04) and the anterior lateral mass height (p < 0.001).

Conclusions

A significant variation in the morphological features of C-1 exists, especially between the left and right sides and in younger children. The differences between boys and girls are clinically insignificant. The critical measurement of whether the C-1 lateral mass in a child could accommodate a 3.5-mm-diameter screw is the width of the lateral mass and its proximity to the vertebral artery. Only 1 of 152 lateral masses studied would not have been able to accommodate a lateral mass screw. This study reemphasizes the importance of a preoperative CT scan of the upper cervical spine to assure safe and effective placement of the instrumentation at this level.

Restricted access

Robert H. Rosenwasser

Restricted access

Roukoz B. Chamoun, Michel E. Mawad, William E. Whitehead, Thomas G. Luerssen and Andrew Jea

Object

Currently, no diagnostic or treatment standards exist for extracranial carotid artery dissection (CAD) in children after trauma. The purpose of this study was to review and describe the characteristics, diagnosis, and treatment of this rather uncommon sequelae of pediatric trauma.

Methods

A systematic review of the literature was performed to examine the pertinent studies of traumatic extracranial carotid artery (CA) injuries in children.

Results

No randomized trials were identified; however, 19 case reports or small case series consisting of 34 pediatric patients were found in the literature. The diagnosis of CAD was made in 33 of 34 patients only after the onset of ischemic symptomatology. Twenty-four of 34 patients underwent cerebral angiography to confirm diagnosis; MR angiography affirmed the diagnosis in 6 of 34 patients. There was little published experience with CA ultrasonography or CT angiography for diagnosis. Thirty of 34 patients were treated with medical therapy or observation; 2 of 4 patients treated with observation alone died. There was little experience with open surgical treatment of CAD in the pediatric population, and there were no studies on the endovascular treatment of traumatic CAD in children. The literature does not support anticoagulation therapy over antiplatelet therapy.

Conclusions

As a result of this review of the literature, the authors propose the algorithms for the evaluation and treatment of traumatic extracranial CADs in children. These recommendations include utilizing MR angiography as a screening tool in cases in which the clinical suspicion of CAD is high, using conventional cerebral angiography to confirm the diagnosis, implementing antiplatelet therapy as initial medical management, and reserving endovascular stenting in cases of failed medical treatment.