Browse

You are looking at 1 - 10 of 56 items for

  • By Author: Lafage, Virginie x
  • By Author: Shaffrey, Christopher I. x
Clear All
Restricted access

Justin S. Smith, Thomas J. Buell, Christopher I. Shaffrey, Han Jo Kim, Eric Klineberg, Themistocles Protopsaltis, Peter Passias, Gregory M. Mundis Jr., Robert Eastlack, Vedat Deviren, Michael P. Kelly, Alan H. Daniels, Jeffrey L. Gum, Alex Soroceanu, Munish Gupta, Doug Burton, Richard Hostin, Robert Hart, Virginie Lafage, Renaud Lafage, Frank J. Schwab, Shay Bess and Christopher P. Ames

OBJECTIVE

Although surgical treatment can provide significant improvement of symptomatic adult cervical spine deformity (ACSD), few reports have focused on the associated complications. The objective of this study was to assess complication rates at a minimum 1-year follow-up based on a prospective multicenter series of ACSD patients treated surgically.

METHODS

A prospective multicenter database of consecutive operative ACSD patients was reviewed for perioperative (< 30 days), early (30–90 days), and delayed (> 90 days) complications with a minimum 1-year follow-up. Enrollment required at least 1 of the following: cervical kyphosis > 10°, cervical scoliosis > 10°, C2–7 sagittal vertical axis > 4 cm, or chin-brow vertical angle > 25°.

RESULTS

Of 167 patients, 133 (80%, mean age 62 years, 62% women) had a minimum 1-year follow-up (mean 1.8 years). The most common diagnoses were degenerative (45%) and iatrogenic (17%) kyphosis. Almost 40% of patients were active or past smokers, 17% had osteoporosis, and 84% had at least 1 comorbidity. The mean baseline Neck Disability Index and modified Japanese Orthopaedic Association scores were 47 and 13.6, respectively. Surgical approaches were anterior-only (18%), posterior-only (47%), and combined (35%). A total of 132 complications were reported (54 minor and 78 major), and 74 (56%) patients had at least 1 complication. The most common complications included dysphagia (11%), distal junctional kyphosis (9%), respiratory failure (6%), deep wound infection (6%), new nerve root motor deficit (5%), and new sensory deficit (5%). A total of 4 deaths occurred that were potentially related to surgery, 2 prior to 1-year follow-up (1 cardiopulmonary and 1 due to obstructive sleep apnea and narcotic use) and 2 beyond 1-year follow-up (both cardiopulmonary and associated with revision procedures). Twenty-six reoperations were performed in 23 (17%) patients, with the most common indications of deep wound infection (n = 8), DJK (n = 7), and neurological deficit (n = 6). Although anterior-only procedures had a trend toward lower overall (42%) and major (21%) complications, rates were not significantly different from posterior-only (57% and 33%, respectively) or combined (61% and 37%, respectively) approaches (p = 0.29 and p = 0.38, respectively).

CONCLUSIONS

This report provides benchmark rates for ACSD surgery complications at a minimum 1-year (mean 1.8 years) follow-up. The marked health and functional impact of ACSD, the frail population it affects, and the high rates of surgical complications necessitate a careful risk-benefit assessment when contemplating surgery. Collectively, these findings provide benchmarks for complication rates and may prove useful for patient counseling and efforts to improve the safety of care.

Restricted access

Alan H. Daniels, Daniel B. C. Reid, Wesley M. Durand, D. Kojo Hamilton, Peter G. Passias, Han Jo Kim, Themistocles S. Protopsaltis, Virginie Lafage, Justin S. Smith, Christopher I. Shaffrey, Munish Gupta, Eric Klineberg, Frank Schwab, Douglas Burton, Shay Bess, Christopher P. Ames, Robert A. Hart and the International Spine Study Group

OBJECTIVE

Optimal patient selection for upper-thoracic (UT) versus lower-thoracic (LT) fusion during adult spinal deformity (ASD) correction is challenging. Radiographic and clinical outcomes following UT versus LT fusion remain incompletely understood. The purposes of this study were: 1) to evaluate demographic, radiographic, and surgical characteristics associated with choice of UT versus LT fusion endpoint; and 2) to evaluate differences in radiographic, clinical, and health-related quality of life (HRQOL) outcomes following UT versus LT fusion for ASD.

METHODS

Retrospective review of a prospectively collected multicenter ASD database was performed. Patients with ASD who underwent fusion from the sacrum/ilium to the LT (T9–L1) or UT (T1–6) spine were compared for demographic, radiographic, and surgical characteristics. Outcomes including proximal junctional kyphosis (PJK), reoperation, rod fracture, pseudarthrosis, overall complications, 2-year change in alignment parameters, and 2-year HRQOL metrics (Lumbar Stiffness Disability Index, Scoliosis Research Society-22r questionnaire, Oswestry Disability Index) were compared after controlling for confounding factors via multivariate analysis.

RESULTS

Three hundred three patients (169 LT, 134 UT) were evaluated. Independent predictors of UT fusion included greater thoracic kyphosis (odds ratio [OR] 0.97 per degree, p = 0.0098), greater coronal Cobb angle (OR 1.06 per degree, p < 0.0001), and performance of a 3-column osteotomy (3-CO; OR 2.39, p = 0.0351). While associated with longer operative times (ratio 1.13, p < 0.0001) and greater estimated blood loss (ratio 1.31, p = 0.0018), UT fusions resulted in greater sagittal vertical axis improvement (−59.5 vs −41.0 mm, p = 0.0035) and lower PJK rates (OR 0.49, p = 0.0457). No significant differences in postoperative HRQOL measures, reoperation, or overall complication rates were detected between groups (all p > 0.1).

CONCLUSIONS

Greater deformity and need for 3-CO increased the likelihood of UT fusion. Despite longer operative times and greater blood loss, UT fusions resulted in better sagittal correction and lower 2-year PJK rates following surgery for ASD. While continued surveillance is necessary, this information may inform patient counseling and surgical decision-making.

Restricted access

Dana L. Cruz, Ethan W. Ayres, Matthew A. Spiegel, Louis M. Day, Robert A. Hart, Christopher P. Ames, Douglas C. Burton, Justin S. Smith, Christopher I. Shaffrey, Frank J. Schwab, Thomas J. Errico, Shay Bess, Virginie Lafage and Themistocles S. Protopsaltis

OBJECTIVE

Neck and back pain are highly prevalent conditions that account for major disability. The Neck Disability Index (NDI) and Oswestry Disability Index (ODI) are the two most common functional status measures for neck and back pain. However, no single instrument exists to evaluate patients with concurrent neck and back pain. The recently developed Total Disability Index (TDI) combines overlapping elements from the ODI and NDI with the unique items from each. This study aimed to prospectively validate the TDI in patients with spinal deformity, back pain, and/or neck pain.

METHODS

This study is a retrospective review of prospectively collected data from a single center. The 14-item TDI, derived from ODI and NDI domains, was administered to consecutive patients presenting to a spine practice. Patients were assessed using the ODI, NDI, and EQ-5D. Validation of internal consistency, test-retest reproducibility, and validity of reconstructed NDI and ODI scores derived from TDI were assessed.

RESULTS

A total of 252 patients (mean age 55 years, 56% female) completed initial assessments (back pain, n = 115; neck pain, n = 52; back and neck pain, n = 55; spinal deformity, n = 55; and no pain/deformity, n = 29). Of these patients, 155 completed retests within 14 days. Patients represented a wide range of disability (mean ODI score: 36.3 ± 21.6; NDI score: 30.8 ± 21.8; and TDI score: 34.1 ± 20.0). TDI demonstrated excellent internal consistency (Cronbach’s alpha = 0.922) and test-retest reliability (intraclass correlation coefficient = 0.96). Differences between actual and reconstructed scores were not clinically significant. Subanalyses demonstrated TDI’s ability to quantify the degree of disability due to back or neck pain in patients complaining of pain in both regions.

CONCLUSIONS

The TDI is a valid and reliable disability measure in patients with back and/or neck pain and can capture each spine region’s contribution to total disability. The TDI could be a valuable method for total spine assessment in a clinical setting, and its completion is less time consuming than that for both the ODI and NDI.

Restricted access

Han Jo Kim, Sohrab Virk, Jonathan Elysee, Peter Passias, Christopher Ames, Christopher I. Shaffrey, Gregory Mundis Jr., Themistocles Protopsaltis, Munish Gupta, Eric Klineberg, Justin S. Smith, Douglas Burton, Frank Schwab, Virginie Lafage, Renaud Lafage and the International Spine Study Group

OBJECTIVE

Cervical deformity (CD) is difficult to define due to the high variability in normal cervical alignment based on postural- and thoracolumbar-driven changes to cervical alignment. The purpose of this study was to identify whether patterns of sagittal deformity could be established based on neutral and dynamic alignment, as shown on radiographs.

METHODS

This study is a retrospective review of a prospective, multicenter database of CD patients who underwent surgery from 2013 to 2015. Their radiographs were reviewed by 12 individuals using a consensus-based method to identify severe sagittal CD. Radiographic parameters correlating with health-related quality of life were introduced in a two-step cluster analysis (a combination of hierarchical cluster and k-means cluster) to identify patterns of sagittal deformity. A comparison of lateral and lateral extension radiographs between clusters was performed using an ANOVA in a post hoc analysis.

RESULTS

Overall, 75 patients were identified as having severe CD due to sagittal malalignment, and they formed the basis of this study. Their mean age was 64 years, their body mass index was 29 kg/m2, and 66% were female. There were significant correlations between focal alignment/flexibility of maximum kyphosis, cervical lordosis, and thoracic slope minus cervical lordosis (TS-CL) flexibility (r = 0.27, 0.31, and −0.36, respectively). Cluster analysis revealed 3 distinct groups based on alignment and flexibility. Group 1 (a pattern involving a flat neck with lack of compensation) had a large TS-CL mismatch despite flexibility in cervical lordosis; group 2 (a pattern involving focal deformity) had focal kyphosis between 2 adjacent levels but no large regional cervical kyphosis under the setting of a low T1 slope (T1S); and group 3 (a pattern involving a cervicothoracic deformity) had a very large T1S with a compensatory hyperlordosis of the cervical spine.

CONCLUSIONS

Three distinct patterns of CD were identified in this cohort: flat neck, focal deformity, and cervicothoracic deformity. One key element to understanding the difference between these groups was the alignment seen on extension radiographs. This information is a first step in developing a classification system that can guide the surgical treatment for CD and the choice of fusion level.

Free access

Samantha R. Horn, Peter G. Passias, Cheongeun Oh, Virginie Lafage, Renaud Lafage, Justin S. Smith, Breton Line, Neel Anand, Frank A. Segreto, Cole A. Bortz, Justin K. Scheer, Robert K. Eastlack, Vedat Deviren, Praveen V. Mummaneni, Alan H. Daniels, Paul Park, Pierce D. Nunley, Han Jo Kim, Eric O. Klineberg, Douglas C. Burton, Robert A. Hart, Frank J. Schwab, Shay Bess, Christopher I. Shaffrey, Christopher P. Ames and the International Spine Study Group

OBJECTIVE

Cervical deformity (CD) correction is clinically challenging. There is a high risk of developing complications with these highly complex procedures. The aim of this study was to use baseline demographic, clinical, and surgical factors to predict a poor outcome following CD surgery.

METHODS

The authors performed a retrospective review of a multicenter prospective CD database. CD was defined as at least one of the following: cervical kyphosis (C2–7 Cobb angle > 10°), cervical scoliosis (coronal Cobb angle > 10°), C2–7 sagittal vertical axis (cSVA) > 4 cm, or chin-brow vertical angle (CBVA) > 25°. Patients were categorized based on having an overall poor outcome or not. Health-related quality of life measures consisted of Neck Disability Index (NDI), EQ-5D, and modified Japanese Orthopaedic Association (mJOA) scale scores. A poor outcome was defined as having all 3 of the following categories met: 1) radiographic poor outcome: deterioration or severe radiographic malalignment 1 year postoperatively for cSVA or T1 slope–cervical lordosis mismatch (TS-CL); 2) clinical poor outcome: failing to meet the minimum clinically important difference (MCID) for NDI or having a severe mJOA Ames modifier; and 3) complications/reoperation poor outcome: major complication, death, or reoperation for a complication other than infection. Univariate logistic regression followed by multivariate regression models was performed, and internal validation was performed by calculating the area under the curve (AUC).

RESULTS

In total, 89 patients with CD were included (mean age 61.9 years, female sex 65.2%, BMI 29.2 kg/m2). By 1 year postoperatively, 18 (20.2%) patients were characterized as having an overall poor outcome. For radiographic poor outcomes, patients’ conditions either deteriorated or remained severe for TS-CL (73% of patients), cSVA (8%), horizontal gaze (34%), and global SVA (28%). For clinical poor outcomes, 80% and 60% of patients did not reach MCID for EQ-5D and NDI, respectively, and 24% of patients had severe symptoms (mJOA score 0–11). For the complications/reoperation poor outcome, 28 patients experienced a major complication, 11 underwent a reoperation, and 1 had a complication-related death. Of patients with a poor clinical outcome, 75% had a poor radiographic outcome; 35% of poor radiographic and 37% of poor clinical outcome patients had a major complication. A poor outcome was predicted by the following combination of factors: osteoporosis, baseline neurological status, use of a transition rod, number of posterior decompressions, baseline pelvic tilt, T2–12 kyphosis, TS-CL, C2–T3 SVA, C2–T1 pelvic angle (C2 slope), global SVA, and number of levels in maximum thoracic kyphosis. The final model predicting a poor outcome (AUC 86%) included the following: osteoporosis (OR 5.9, 95% CI 0.9–39), worse baseline neurological status (OR 11.4, 95% CI 1.8–70.8), baseline pelvic tilt > 20° (OR 0.92, 95% CI 0.85–0.98), > 9 levels in maximum thoracic kyphosis (OR 2.01, 95% CI 1.1–4.1), preoperative C2–T3 SVA > 5.4 cm (OR 1.01, 95% CI 0.9–1.1), and global SVA > 4 cm (OR 3.2, 95% CI 0.09–10.3).

CONCLUSIONS

Of all CD patients in this study, 20.2% had a poor overall outcome, defined by deterioration in radiographic and clinical outcomes, and a major complication. Additionally, 75% of patients with a poor clinical outcome also had a poor radiographic outcome. A poor overall outcome was most strongly predicted by severe baseline neurological deficit, global SVA > 4 cm, and including more of the thoracic maximal kyphosis in the construct.

Free access

Michael Y. Wang, Stacie Tran, G. Damian Brusko, Robert Eastlack, Paul Park, Pierce D. Nunley, Adam S. Kanter, Juan S. Uribe, Neel Anand, David O. Okonkwo, Khoi D. Than, Christopher I. Shaffrey, Virginie Lafage, Gregory M. Mundis Jr., Praveen V. Mummaneni and the MIS-ISSG Group

OBJECTIVE

The past decade has seen major advances in techniques for treating more complex spinal disorders using minimally invasive surgery (MIS). While appealing from the standpoint of patient perioperative outcomes, a major impediment to adoption has been the significant learning curve in utilizing MIS techniques.

METHODS

Data were retrospectively analyzed from a multicenter series of adult spinal deformity surgeries treated at eight tertiary spine care centers in the period from 2008 to 2015. All patients had undergone a less invasive or hybrid approach for a deformity correction satisfying the following inclusion criteria at baseline: coronal Cobb angle ≥ 20°, sagittal vertical axis (SVA) > 5 cm, or pelvic tilt > 20°. Analyzed data included baseline demographic details, severity of deformity, surgical metrics, clinical outcomes (numeric rating scale [NRS] score and Oswestry Disability Index [ODI]), radiographic outcomes, and complications. A minimum follow-up of 2 years was required for study inclusion.

RESULTS

Across the 8-year study period, among 222 patients, there was a trend toward treating increasingly morbid patients, with the mean age increasing from 50.7 to 62.4 years (p = 0.013) and the BMI increasing from 25.5 to 31.4 kg/m2 (p = 0.12). There was no statistical difference in the severity of coronal and sagittal deformity treated over the study period. With regard to radiographic changes following surgery, there was an increasing emphasis on sagittal correction and, conversely, less coronal correction. There was no statistically significant difference in clinical outcomes over the 8-year period, and meaningful improvements were seen in all years (ODI range of improvement: 15.0–26.9). Neither were there statistically significant differences in major complications; however, minor complications were seen less often as the surgeons gained experience (p = 0.064). Operative time was decreased on average by 47% over the 8-year period.

Trends in surgical practice were seen as well. Total fusion construct length was unchanged until the last year when there was a marked decrease in conjunction with a decrease in interbody levels treated (p = 0.004) while obtaining a higher degree of sagittal correction, suggesting more selective but powerful interbody reduction methods as reflected by an increase in the lateral and anterior column resection techniques being utilized.

CONCLUSIONS

The use of minimally invasive methods for adult spinal deformity surgery has evolved over the past decade. Experienced surgeons are treating older and more morbid patients with similar outcomes. A reliance on selective, more powerful interbody approaches is increasing as well.

Restricted access

Nitin Agarwal, Federico Angriman, Ezequiel Goldschmidt, James Zhou, Adam S. Kanter, David O. Okonkwo, Peter G. Passias, Themistocles Protopsaltis, Virginie Lafage, Renaud Lafage, Frank Schwab, Shay Bess, Christopher Ames, Justin S. Smith, Christopher I. Shaffrey, Douglas Burton, D. Kojo Hamilton and the International Spine Study Group

OBJECTIVE

Obesity, a condition that is increasing in prevalence in the United States, has previously been associated with poorer outcomes following deformity surgery, including higher rates of perioperative complications such as deep and superficial infections. To date, however, no study has examined the relationship between preoperative BMI and outcomes of deformity surgery as measured by spine parameters such as the sagittal vertical axis (SVA), as well as health-related quality of life (HRQoL) measures such as the Oswestry Disability Index (ODI) and Scoliosis Research Society–22 patient questionnaire (SRS-22). To this end, the authors sought to clarify the relationship between BMI and postoperative change in SVA as well as HRQoL outcomes.

METHODS

The authors performed a retrospective review of a prospectively managed multicenter adult spinal deformity database collected and maintained by the International Spine Study Group (ISSG) between 2009 and 2014. The primary independent variable considered was preoperative BMI. The primary outcome was the change in SVA at 1 year after deformity surgery. Postoperative ODI and SRS-22 outcome measures were evaluated as secondary outcomes. Generalized linear models were used to model the primary and secondary outcomes at 1 year as a function of BMI at baseline, while adjusting for potential measured confounders.

RESULTS

Increasing BMI (compared to BMI < 18) was not associated with change of SVA at 1 year postsurgery. However, BMIs in the obese range of 30 to 34.9 kg/m2, compared to BMI < 18 at baseline, were associated with poorer outcomes as measured by the SRS-22 score (estimated change −0.47, 95% CI −0.93 to −0.01, p = 0.04). While BMIs > 30 appeared to be associated with poorer outcomes as determined by the ODI, this correlation did not reach statistical significance.

CONCLUSIONS

Baseline BMI did not affect the achievable SVA at 1 year postsurgery. Further studies should evaluate whether even in the absence of a change in SVA, baseline BMIs in the obese range are associated with worsened HRQoL outcomes after spinal surgery.

Restricted access

Ferran Pellisé, Miquel Serra-Burriel, Justin S. Smith, Sleiman Haddad, Michael P. Kelly, Alba Vila-Casademunt, Francisco Javier Sánchez Pérez-Grueso, Shay Bess, Jeffrey L. Gum, Douglas C. Burton, Emre Acaroğlu, Frank Kleinstück, Virginie Lafage, Ibrahim Obeid, Frank Schwab, Christopher I. Shaffrey, Ahmet Alanay, Christopher Ames, the International Spine Study Group and the European Spine Study Group

OBJECTIVE

Adult spinal deformity (ASD) surgery has a high rate of major complications (MCs). Public information about adverse outcomes is currently limited to registry average estimates. The object of this study was to assess the incidence of adverse events after ASD surgery, and to develop and validate a prognostic tool for the time-to-event risk of MC, hospital readmission (RA), and unplanned reoperation (RO).

METHODS

Two models per outcome, created with a random survival forest algorithm, were trained in an 80% random split and tested in the remaining 20%. Two independent prospective multicenter ASD databases, originating from the European continent and the United States, were queried, merged, and analyzed. ASD patients surgically treated by 57 surgeons at 23 sites in 5 countries in the period from 2008 to 2016 were included in the analysis.

RESULTS

The final sample consisted of 1612 ASD patients: mean (standard deviation) age 56.7 (17.4) years, 76.6% women, 10.4 (4.3) fused vertebral levels, 55.1% of patients with pelvic fixation, 2047.9 observation-years. Kaplan-Meier estimates showed that 12.1% of patients had at least one MC at 10 days after surgery; 21.5%, at 90 days; and 36%, at 2 years. Discrimination, measured as the concordance statistic, was up to 71.7% (95% CI 68%–75%) in the development sample for the postoperative complications model. Surgical invasiveness, age, magnitude of deformity, and frailty were the strongest predictors of MCs. Individual cumulative risk estimates at 2 years ranged from 3.9% to 74.1% for MCs, from 3.17% to 44.2% for RAs, and from 2.67% to 51.9% for ROs.

CONCLUSIONS

The creation of accurate prognostic models for the occurrence and timing of MCs, RAs, and ROs following ASD surgery is possible. The presented variability in patient risk profiles alongside the discrimination and calibration of the models highlights the potential benefits of obtaining time-to-event risk estimates for patients and clinicians.

Restricted access

Michael P. Kelly, Michael A. Kallen, Christopher I. Shaffrey, Justin S. Smith, Douglas C. Burton, Christopher P. Ames, Virginie Lafage, Frank J. Schwab, Han Jo Kim, Eric O. Klineberg, Shay Bess and the International Spine Study Group

OBJECTIVE

After using PROsetta Stone crosswalk tables to calculate Patient-Reported Outcomes Measurement Information System (PROMIS) Physical Function (PF) and Pain Interference (PI) scores, the authors sought to examine 1) correlations with Scoliosis Research Society–22r (SRS-22r) scores, 2) responsiveness to change, and 3) the relationship between baseline scores and 2-year follow-up scores in adult spinal deformity (ASD).

METHODS

PROsetta Stone crosswalk tables were used to converted SF-36 scores to PROMIS scores for pain and physical function in a cohort of ASD patients with 2-year follow-up. Spearman correlations were used to evaluate the relationship of PROMIS scores with SRS-22r scores. Effect size (ES) and adjusted standardized response mean (aSRM) were used to assess responsiveness to change. Linear regression was used to evaluate the association between baseline scores and 2-year follow-up scores.

RESULTS

In total, 425 (425/625, 68%) patients met inclusion criteria. Strong correlations (all |r| > 0.7, p < 0.001) were found between baseline and 2-year PROMIS values and corresponding SRS-22r domain scores. PROMIS-PI showed a large ES (1.09) and aSRM (0.88), indicating good responsiveness to change. PROMIS-PF showed a moderate ES (0.52) and moderate aSRM (0.69), indicating a moderate responsiveness to change. Patients with greater baseline pain complaints were associated with greater pain improvement at 2 years for both SRS-22r Pain (B = 0.39, p < 0.001) and PROMIS-PI (B = 0.45, p < 0.001). Higher functional scores at baseline were associated with greater average improvements in both SRS-22r Activity (B = 0.62, p < 0.001) and PROMIS-PF (B = 0.40, p < 0.001).

CONCLUSIONS

The authors found strong correlations between the SRS-22r Pain and Activity domains with corresponding PROMIS-PI and -PF scores. Pain measurements showed similar and strong ES and aSRM while the function measurements showed similar, moderate ES and aSRM at 2-year follow-up. These data support further exploration of the use of PROMIS–computer adaptive test instruments in ASD.

Restricted access

Thomas J. Buell, Shay Bess, Ming Xu, Frank J. Schwab, Virginie Lafage, Christopher P. Ames, Christopher I. Shaffrey and Justin S. Smith

OBJECTIVE

Proximal junctional kyphosis (PJK) is, in part, due to altered segmental biomechanics at the junction of rigid instrumented spine and relatively hypermobile non-instrumented adjacent segments. Proper application of posteriorly anchored polyethylene tethers (i.e., optimal configuration and tension) may mitigate adjacent-segment stress and help prevent PJK. The purpose of this study was to investigate the impact of different tether configurations and tensioning (preloading) on junctional range-of-motion (ROM) and other biomechanical indices for PJK in long instrumented spine constructs.

METHODS

Using a validated finite element model of a T7–L5 spine segment, testing was performed on intact spine, a multilevel posterior screw-rod construct (PS construct; T11–L5) without tether, and 15 PS constructs with different tether configurations that varied according to 1) proximal tether fixation of upper instrumented vertebra +1 (UIV+1) and/or UIV+2; 2) distal tether fixation to UIV, to UIV−1, or to rods; and 3) use of a loop (single proximal fixation) or weave (UIV and/or UIV+1 fixation in addition to UIV+1 and/or UIV+2 proximal attachment) of the tether. Segmental ROM, intradiscal pressure (IDP), inter- and supraspinous ligament (ISL/SSL) forces, and screw loads were assessed under variable tether preload.

RESULTS

PS construct junctional ROM increased abruptly from 10% (T11–12) to 99% (T10–11) of baseline. After tethers were grouped by most cranial proximal fixation (UIV+1 vs UIV+2) and use of loop versus weave, UIV+2 Loop and/or Weave most effectively dampened junctional ROM and adjacent-segment stress. Different distal fixation and use of loop versus weave had minimal effect. The mean segmental ROM at T11–12, T10–11, and T9–10, respectively, was 6%, 40%, and 99% for UIV+1 Loop; 6%, 44%, and 99% for UIV+1 Weave; 5%, 23%, and 26% for UIV+2 Loop; and 5%, 24%, and 31% for UIV+2 Weave.

Tethers shared loads with posterior ligaments; consequently, increasing tether preload tension reduced ISL/SSL forces, but screw loads increased. Further attenuation of junctional ROM and IDP reversed above approximately 100 N tether preload, suggesting diminished benefit for biomechanical PJK prophylaxis at higher preload tensioning.

CONCLUSIONS

In this study, finite element analysis demonstrated UIV+2 Loop and/or Weave tether configurations most effectively mitigated adjacent-segment stress in long instrumented spine constructs. Tether preload dampened ligament forces at the expense of screw loads, and an inflection point (approximately 100 N) was demonstrated above which junctional ROM and IDP worsened (i.e., avoid over-tightening tethers). Results suggest tether configuration and tension influence PJK biomechanics and further clinical research is warranted.