Browse

You are looking at 1 - 10 of 11 items for

  • By Author: Kondziolka, Douglas x
  • By Author: Pollock, Bruce E. x
Clear All
Restricted access

Jason P. Sheehan, Shota Tanaka, Michael J. Link, Bruce E. Pollock, Douglas Kondziolka, David Mathieu, Christopher Duma, A. Byron Young, Anthony M. Kaufmann, Heyoung McBride, Peter A. Weisskopf, Zhiyuan Xu, Hideyuki Kano, Huai-che Yang and L. Dade Lunsford

Object

Glomus tumors are rare skull base neoplasms that frequently involve critical cerebrovascular structures and lower cranial nerves. Complete resection is often difficult and may increase cranial nerve deficits. Stereotactic radiosurgery has gained an increasing role in the management of glomus tumors. The authors of this study examine the outcomes after radiosurgery in a large, multicenter patient population.

Methods

Under the auspices of the North American Gamma Knife Consortium, 8 Gamma Knife surgery centers that treat glomus tumors combined their outcome data retrospectively. One hundred thirty-four patient procedures were included in the study (134 procedures in 132 patients, with each procedure being analyzed separately). Prior resection was performed in 51 patients, and prior fractionated external beam radiotherapy was performed in 6 patients. The patients' median age at the time of radiosurgery was 59 years. Forty percent had pulsatile tinnitus at the time of radiosurgery. The median dose to the tumor margin was 15 Gy. The median duration of follow-up was 50.5 months (range 5–220 months).

Results

Overall tumor control was achieved in 93% of patients at last follow-up; actuarial tumor control was 88% at 5 years postradiosurgery. Absence of trigeminal nerve dysfunction at the time of radiosurgery (p = 0.001) and higher number of isocenters (p = 0.005) were statistically associated with tumor progression–free tumor survival. Patients demonstrating new or progressive cranial nerve deficits were also likely to demonstrate tumor progression (p = 0.002). Pulsatile tinnitus improved in 49% of patients who reported it at presentation. New or progressive cranial nerve deficits were noted in 15% of patients; improvement in preexisting cranial nerve deficits was observed in 11% of patients. No patient died as a result of tumor progression.

Conclusions

Gamma Knife surgery was a well-tolerated management strategy that provided a high rate of long-term glomus tumor control. Symptomatic tinnitus improved in almost one-half of the patients. Overall neurological status and cranial nerve function were preserved or improved in the vast majority of patients after radiosurgery.

Restricted access

Hideyuki Kano, Douglas Kondziolka, David Mathieu, Scott L. Stafford, Thomas J. Flannery, Ajay Niranjan, Bruce E. Pollock, Anthony M. Kaufmann, John C. Flickinger and L. Dade Lunsford

Object

The aim of this study was to evaluate the outcomes of Gamma Knife surgery (GKS) when used for patients with intractable cluster headache (CH).

Methods

Four participating centers of the North American Gamma Knife Consortium identified 17 patients who underwent GKS for intractable CH between 1996 and 2008. The median patient age was 47 years (range 26–83 years). The median duration of pain before GKS was 10 years (range 1.3–40 years). Seven patients underwent unsuccessful prior surgical procedures, including microvascular decompression (2 patients), microvascular decompression with glycerol rhizotomy (2 patients), deep brain stimulation (1 patient), trigeminal ganglion stimulation (1 patient), and prior GKS (1 patient). Fourteen patients had associated autonomic symptoms. The radiosurgical target was the trigeminal nerve (TN) root and the sphenopalatine ganglion (SPG) in 8 patients, only the TN in 8 patients, and only the SPG in 1 patient. The median maximum TN and SPG dose was 80 Gy.

Results

Favorable pain relief (Barrow Neurological Institute Grades I–IIIb) was achieved and maintained in 10 (59%) of 17 patients at a median follow-up of 34 months. Three patients required additional procedures (repeat GKS in 2 patients, hypothalamic deep brain stimulation in 1 patient). Eight (50%) of 16 patients who had their TN irradiated developed facial sensory dysfunction after GKS.

Conclusions

Gamma Knife surgery for intractable, medically refractory CH provided lasting pain reduction in approximately 60% of patients, but was associated with a significantly greater chance of facial sensory disturbances than GKS used for trigeminal neuralgia.

Restricted access

Vestibular schwannoma management

Part II. Failed radiosurgery and the role of delayed microsurgery

Bruce E. Pollock, L. Dade Lunsford, Douglas Kondziolka, Raymond Sekula, Brian R. Subach, Robert L. Foote and John C. Flickinger

Object. The indications, operative findings, and outcomes of vestibular schwannoma microsurgery are controversial when it is performed after stereotactic radiosurgery. To address these issues, the authors reviewed the experience at two academic medical centers.

Methods. During a 10-year interval, 452 patients with unilateral vestibular schwannomas underwent gamma knife radiosurgery. Thirteen patients (2.9%) underwent delayed microsurgery at a median of 27 months (range 7–72 months) after they had undergone radiosurgery. Six of the 13 patients had undergone one or more microsurgical procedures before they underwent radiosurgery. The indications for surgery were tumor enlargement with stable symptoms in five patients, tumor enlargement with new or increased symptoms in five patients, and increased symptoms without evidence of tumor growth in three patients. Gross-total resection was achieved in seven patients and near-gross-total resection in four patients. The surgery was described as more difficult than that typically performed for schwannoma in eight patients, no different in four patients, and easier in one patient. At the last follow-up evaluation, three patients had normal or near-normal facial function, three patients had moderate facial dysfunction, and seven had facial palsies. Three patients were incapable of caring for themselves, and one patient died of progression of a malignant triton tumor.

Conclusions. Failed radiosurgery in cases of vestibular schwannoma was rare. No clear relationship was demonstrated between the use of radiosurgery and the subsequent ease or difficulty of delayed microsurgery. Because some patients have temporary enlargement of their tumor after radiosurgery, the need for surgical resection after radiosurgery should be reviewed with the neurosurgeon who performed the radiosurgery and should be delayed until sustained tumor growth is confirmed. A subtotal tumor resection should be considered for patients who require surgical resection of their tumor after vestibular schwannoma radiosurgery.

Restricted access

Vestibular schwannoma management

Part I. Failed microsurgery and the role of delayed stereotactic radiosurgery

Bruce E. Pollock, L. Dade Lunsford, John C. Flickinger, Brent L. Clyde and Douglas Kondziolka

Object. The purpose of this study was to analyze patient outcomes and to define the role of radiosurgery in patients who have undergone prior microsurgical resection of their vestibular schwannoma.

Methods. The authors evaluated the pre- and postoperative clinical and neuroimaging characteristics of 76 consecutive patients with 78 vestibular schwannomas who underwent radiosurgery after previous surgical resection. Twenty-nine patients (37% of tumors) had undergone more than one prior resection. Forty-three patients (55% of tumors) had significant impairment of facial nerve function (House—Brackmann Grades III–VI) after their microsurgical procedure; 50% had trigeminal sensory loss, and 96% had poor speech discrimination (< 50%). The median evaluation period following radiosurgery was 43 months (range 12–101 months). Tumor growth control after radiosurgery was achieved in 73 tumors (94%). Six patients underwent additional surgical resection despite radiosurgery (median of 32 months after radiosurgery), and one patient underwent repeated radiosurgery for tumor progression outside the irradiated volume. Eleven (23%) of 47 patients with Grades I to III facial function before radiosurgery developed increased facial weakness after radiosurgery. Eleven patients (14%) developed new trigeminal symptoms.

Conclusions. Radiosurgery proved to be a safe and effective alternative to additional microsurgery in patients in whom the initial microsurgical removal failed. Stereotactic radiosurgery should be considered for all patients who have regrowth or progression of previously surgically treated vestibular schwannomas.

Restricted access

Bruce E. Pollock and Douglas Kondziolka

✓ Sphenopalatine neuralgia is a rare craniofacial pain syndrome that is characterized by unilateral pain in the orbit, mouth, nose, and posterior mastoid process. During attacks of pain, vasomotor activity often results in ipsilateral nasal drainage, eye irritation, and lacrimation. The authors present a patient with a 15-year history of sphenopalatine neuralgia who underwent stereotactic radiosurgery targeted at the sphenopalatine ganglion, with initial pain relief, and repeated radiosurgery 17 months later for partial pain recurrence. Two years following radiosurgery, the patient is pain free, no longer suffering from nasal discharge and eye irritation.

Restricted access

Bruce E. Pollock, Douglas Kondziolka, John C. Flickinger, Atul K. Patel, David J. Bissonette and L. Dade Lunsford

✓ To determine the accuracy of magnetic resonance (MR) imaging in comparison to cerebral angiography after radiosurgery for an arteriovenous malformation (AVM), the authors reviewed the records of patients who underwent radiosurgery at the University of Pittsburgh Medical Center before 1992. All patients in the analysis had AVMs in which the flow-void signal was visible on preradiosurgical MR imaging. One hundred sixty-four postradiosurgical angiograms were obtained in 140 patients at a median of 2 months after postradiosurgical MR imaging (median 24 months after radiosurgery). Magnetic resonance imaging correctly predicted patency in 64 of 80 patients in whom patent AVMs were seen on follow-up angiography (sensitivity 80%) and angiographic obliteration in 84 of 84 patients (specificity 100%). Overall, 84 of 100 AVMs in which evidence of obliteration was seen on MR images displayed angiographic obliteration (negative predictive value, 84%). Ten of the 16 patients with false-negative MR images underwent follow-up angiography: in seven the lesions progressed to complete angiographic obliteration without further treatment. Exclusion of these seven patients from the false-negative MR imaging group increases the predictive value of a negative postradiosurgical MR image from 84% to 91%. No AVM hemorrhage was observed in clinical follow up of 135 patients after evidence of obliteration on MR imaging (median follow-up interval 35 months; range 2–96 months; total follow up 382 patient-years).

Magnetic resonance imaging proved to be an accurate, noninvasive method for evaluating the patency of AVMs that were identifiable on MR imaging after stereotactic radiosurgery. This imaging modality is less expensive, more acceptable to patients, and does not have the potential for neurological complications that may be associated with cerebral angiography. The risk associated with follow-up cerebral angiography may no longer justify its role in the assessment of radiosurgical results in the treatment of AVMs.