Browse

You are looking at 1 - 10 of 45 items for

  • By Author: Kondziolka, Douglas x
  • By Author: Niranjan, Ajay x
Clear All
Restricted access

Kyung-Jae Park, Hideyuki Kano, Aditya Iyer, Xiaomin Liu, Daniel A. Tonetti, Craig Lehocky, Andrew Faramand, Ajay Niranjan, John C. Flickinger, Douglas Kondziolka and L. Dade Lunsford

OBJECTIVE

The authors of this study evaluate the long-term outcomes of stereotactic radiosurgery (SRS) for cavernous sinus meningioma (CSM).

METHODS

The authors retrospectively assessed treatment outcomes 5–18 years after SRS in 200 patients with CSM. The median patient age was 57 years (range 22–83 years). In total, 120 (60%) patients underwent Gamma Knife SRS as primary management, 46 (23%) for residual tumors, and 34 (17%) for recurrent tumors after one or more surgical procedures. The median tumor target volume was 7.5 cm3 (range 0.1–37.3 cm3), and the median margin dose was 13.0 Gy (range 10–20 Gy).

RESULTS

Tumor volume regressed in 121 (61%) patients, was unchanged in 49 (25%), and increased over time in 30 (15%) during a median imaging follow-up of 101 months. Actuarial tumor control rates at the 5-, 10-, and 15-year follow-ups were 92%, 84%, and 75%, respectively. Of the 120 patients who had undergone SRS as a primary treatment (primary SRS), tumor progression was observed in 14 (11.7%) patients at a median of 48.9 months (range 4.8–120.0 months) after SRS, and actuarial tumor control rates were 98%, 93%, 85%, and 85% at the 1-, 5-, 10-, and 15-year follow-ups post-SRS. A history of tumor progression after microsurgery was an independent predictor of an unfavorable response to radiosurgery (p = 0.009, HR = 4.161, 95% CI 1.438–12.045). Forty-four (26%) of 170 patients who had presented with at least one cranial nerve (CN) deficit improved after SRS. Development of new CN deficits after initial microsurgical resection was an unfavorable factor for improvement after SRS (p = 0.014, HR = 0.169, 95% CI 0.041–0.702). Fifteen (7.5%) patients experienced permanent CN deficits without evidence of tumor progression at a median onset of 9 months (range 2.3–85 months) after SRS. Patients with larger tumor volumes (≥ 10 cm3) were more likely to develop permanent CN complications (p = 0.046, HR = 3.629, 95% CI 1.026–12.838). Three patients (1.5%) developed delayed pituitary dysfunction after SRS.

CONCLUSIONS

This long-term study showed that Gamma Knife radiosurgery provided long-term tumor control for most patients with CSM. Patients who underwent SRS for progressive tumors after prior microsurgery had a greater chance of tumor growth than the patients without prior surgery or those with residual tumor treated after microsurgery.

Restricted access

Seyed H. Mousavi, Berkcan Akpinar, Ajay Niranjan, Vikas Agarwal, Jonathan Cohen, John C. Flickinger, Douglas Kondziolka and L. Dade Lunsford

OBJECTIVE

Contrast enhancement of the retrogasserian trigeminal nerve on MRI scans frequently develops after radiosurgical ablation for the management of medically refractory trigeminal neuralgia (TN). The authors sought to evaluate the clinical significance of this imaging finding in patients who underwent a second radiosurgical procedure for recurrent TN.

METHODS

During a 22-year period, 360 patients underwent Gamma Knife stereotactic radiosurgery (SRS) as their first surgical procedure for TN at the authors' center. The authors retrospectively analyzed the data from 59 patients (mean age 72 years, range 33–89 years) who underwent repeat SRS for recurrent pain at a median of 30 months (range 6–146 months) after the first SRS. The isocenter was 4 mm, and the median maximum doses for the first and second procedures were 80 Gy and 70 Gy, respectively. A neuroradiologist and a neurosurgeon blinded to the treated side evaluated the presence of nerve contrast enhancement on MRI series at the time of the repeat procedure. The authors correlated the presence of this imaging change with clinical outcomes. Pain outcomes and development of trigeminal sensory dysfunction were evaluated with the Barrow Neurological Institute (BNI) Pain Scale and BNI Numbness Scale, respectively. The mean length of follow-up after the second SRS was 58 months (95% CI 49–68 months).

RESULTS

At the time of the repeat SRS, contrast enhancement of the trigeminal nerve on MRI scans was observed in 31 patients (53%). Five years after the SRS, patients with this enhancement had lower actuarial rates of complete pain relief after the repeat SRS (27% [95% CI 7%–47%]) than patients without the enhancement (76% [95% CI 58%–94%]) (p < 0.001). At the 5-year follow-up, patients with the contrast enhancement also had a higher risk for trigeminal sensory loss after repeat SRS (75% [95% CI 59%–91%]) than patients without contrast enhancement (26% [95% CI 10%–42%]) (p = 0.001). Dysesthetic pain after repeat SRS was observed for 8 patients with and for 2 patients without contrast enhancement.

CONCLUSIONS

Trigeminal nerve contrast enhancement on MRI scans observed at the time of a repeat SRS for TN was associated with less satisfactory pain control and more frequently detected facial sensory loss. Residual contrast enhancement at the time of a repeat SRS may warrant consideration of dose reduction or further separation of the radiosurgical targets.

Full access

Ajay Niranjan, Hideyuki Kano, Aditya Iyer, Douglas Kondziolka, John C. Flickinger and L. Dade Lunsford

OBJECT

After initial standard of care management of glioblastoma multiforme (GBM), relatively few proven options remain for patients with unresected progressive tumor. Numerous reports describe the value of radiosurgery, yet this modality appears to remain underutilized. The authors analyzed the outcomes of early adjuvant stereotactic radiosurgery (SRS) for unresected tumor or later salvage SRS for progressive GBM. Radiosurgery was performed as part of the multimodality management and was combined with other therapies. Patients continued to receive additional chemotherapy after SRS and prior to progression being documented. In this retrospective analysis, the authors evaluated factors that affected patient overall survival (OS) and progression-free survival.

METHODS

Between 1987 and 2008 the authors performed Gamma Knife SRS in 297 patients with histologically proven GBMs. All patients had received prior fractionated radiation therapy, and 66% had undergone one or more chemotherapy regimens. Ninety-six patients with deep-seated unresectable GBMs underwent biopsy only. Of those in whom excision had been possible, resection was considered to be gross total in 68 and subtotal in 133. The median patient age was 58 years (range 23–89 years) and the median tumor volume was 14 cm3 (range 0.26–84.2 cm3). The median prescription dose delivered to the imaging-defined tumor margin was 15 Gy (range 9–25 Gy). The median follow-up duration was 8.6 months (range 1.1–173 months). Cox regression models were used to analyze survival outcomes. Variables examined included age, residual versus recurrent tumor, prior chemotherapy, time to first recurrence, SRS dose, and gross tumor volume.

RESULTS

The median survival times after radiosurgery and after diagnosis were 9.03 and 18.1 months, respectively. The 1-year and 2-year OS after SRS were 37.9% and 16.7%, respectively. The 1-year and 2-year OS after diagnosis were 76.2% and 30.8%, respectively. Using multivariate analysis, factors associated with improved OS after diagnosis were younger age (< 60 years) at diagnosis (p < 0.0001), tumor volume < 14 cm3 (p < 0.001), use of prior chemotherapy (p = 0.001), and radiosurgery at the time of recurrence (p < 0.0001). Multivariate analysis showed that younger age (p < 0.0001) and smaller tumor volume (< 14 cm3) (p = 0.001) were significantly associated with increased OS after SRS. Adverse radiation effects were seen in 69 patients (23%). Fifty-eight patients (19.5%) underwent additional resection after SRS. The median survivals after diagnosis for recursive partitioning analysis Classes III, IV and V+VI were 31.6, 20.8, and 16.7 months, respectively.

CONCLUSIONS

In this analysis 30% of a heterogeneous cohort of GBM patients eligible for SRS had an OS of 2 years. Radiosurgery at the time of tumor progression was associated with a median survival of 21.8 months. The role of radiosurgery for GBMs remains controversial. The findings in this study support the need for a funded and appropriately designed clinical trial that will provide a higher level of evidence regarding the future role of SRS for glioblastoma patients in whom disease has progressed despite standard management.

Full access

Aditya Iyer, Gillian Harrison, Hideyuki Kano, Gregory M. Weiner, Neal Luther, Ajay Niranjan, John C. Flickinger, L. Dade Lunsford and Douglas Kondziolka

Object

The aim of this study was to evaluate the imaging response of brain metastases after radiosurgery and to correlate the response with tumor type and patient survival.

Methods

The authors conducted a retrospective review of patients who had undergone Gamma Knife radiosurgery for brain metastases from non–small cell lung cancer (NSCLC), breast cancer, or melanoma. The imaging volumetric response by tumor type was plotted at 3-month intervals and classified as a sustained decrease in tumor volume (Type A), a transient decrease followed by a delayed increase in tumor volume (Type B), or a sustained increase in tumor volume (Type C). These imaging responses were then compared with patient survival and tumor type.

Results

Two hundred thirty-three patients with metastases from NSCLC (96 patients), breast cancer (98 patients), and melanoma (39 patients) were eligible for inclusion in this study. The patients with NSCLC were most likely to exhibit a Type A response; those with breast cancer, a Type B response; and those with melanoma, a Type C response. Among patients with NSCLC, the median overall survival was 11.2 months for those with a Type A response (76 patients), 8.6 months for those with a Type B response (6 patients), and 10.5 months for those with a Type C response (14 patients). Among patients with breast cancer, the median overall survival was 16.6 months in those with a Type A response (65 patients), 18.1 months in those with a Type B response (20 patients), and 7.5 months in those with a Type C response (13 patients). For patients with melanoma, the median overall survival was 5.2 months in those with a Type A response (26 patients) and 6.7 months in those with a Type C response (13 patients). None of the patients with melanoma had a Type B response. The imaging response was significantly associated with survival only in patients with breast cancer.

Conclusions

The various types of imaging responses of metastatic brain tumors after stereotactic radiosurgery depend in part on tumor type. However, the type of response only correlates with survival in patients with breast cancer.

Restricted access

Jason P. Sheehan, Robert M. Starke, David Mathieu, Byron Young, Penny K. Sneed, Veronica L. Chiang, John Y. K. Lee, Hideyuki Kano, Kyung-Jae Park, Ajay Niranjan, Douglas Kondziolka, Gene H. Barnett, Stephen Rush, John G. Golfinos and L. Dade Lunsford

Object

Pituitary adenomas are fairly common intracranial neoplasms, and nonfunctioning ones constitute a large subgroup of these adenomas. Complete resection is often difficult and may pose undue risk to neurological and endocrine function. Stereotactic radiosurgery has come to play an important role in the management of patients with nonfunctioning pituitary adenomas. This study examines the outcomes after radiosurgery in a large, multicenter patient population.

Methods

Under the auspices of the North American Gamma Knife Consortium, 9 Gamma Knife surgery (GKS) centers retrospectively combined their outcome data obtained in 512 patients with nonfunctional pituitary adenomas. Prior resection was performed in 479 patients (93.6%) and prior fractionated external-beam radiotherapy was performed in 34 patients (6.6%). The median age at the time of radiosurgery was 53 years. Fifty-eight percent of patients had some degree of hypopituitarism prior to radiosurgery. Patients received a median dose of 16 Gy to the tumor margin. The median follow-up was 36 months (range 1–223 months).

Results

Overall tumor control was achieved in 93.4% of patients at last follow-up; actuarial tumor control was 98%, 95%, 91%, and 85% at 3, 5, 8, and 10 years postradiosurgery, respectively. Smaller adenoma volume (OR 1.08 [95% CI 1.02–1.13], p = 0.006) and absence of suprasellar extension (OR 2.10 [95% CI 0.96–4.61], p = 0.064) were associated with progression-free tumor survival. New or worsened hypopituitarism after radiosurgery was noted in 21% of patients, with thyroid and cortisol deficiencies reported as the most common postradiosurgery endocrinopathies. History of prior radiation therapy and greater tumor margin doses were predictive of new or worsening endocrinopathy after GKS. New or progressive cranial nerve deficits were noted in 9% of patients; 6.6% had worsening or new onset optic nerve dysfunction. In multivariate analysis, decreasing age, increasing volume, history of prior radiation therapy, and history of prior pituitary axis deficiency were predictive of new or worsening cranial nerve dysfunction. No patient died as a result of tumor progression. Favorable outcomes of tumor control and neurological preservation were reflected in a 4-point radiosurgical pituitary score.

Conclusions

Gamma Knife surgery is an effective and well-tolerated management strategy for the vast majority of patients with recurrent or residual nonfunctional pituitary adenomas. Delayed hypopituitarism is the most common complication after radiosurgery. Neurological and cranial nerve function were preserved in more than 90% of patients after radiosurgery. The radiosurgical pituitary score may predict outcomes for future patients who undergo GKS for a nonfunctioning adenoma.

Free access

Oren Berkowitz, Douglas Kondziolka, David Bissonette, Ajay Niranjan, Hideyuki Kano and L. Dade Lunsford

Object

The first North American 201 cobalt-60 source Gamma Knife surgery (GKS) device was introduced at the University of Pittsburgh Medical Center in 1987. The introduction of this innovative and largely untested surgical procedure prompted the desire to study patient outcomes and evaluate the effectiveness of this technique. The parallel advances in computer software and database technology led to the development of a registry to track patient outcomes at this center. The purpose of this study was to describe the registry's evolution and to evaluate its usefulness.

Methods

A team was created to develop a software database and tracking system to organize and retain information on the usage of GKS. All patients undergoing GKS were systematically entered into this database by a clinician familiar with the technology and the clinical indications. Information included patient demographics and diagnosis as well as the anatomical site of the target and details of the procedure.

Results

There are currently 11,738 patients in the database, which began to be used in August 1987. The University of Pittsburgh Medical Center has pioneered the evaluation and publication of the GKS technique and outcomes. Data derived from this computer database have facilitated the publication of more than 400 peer-reviewed manuscripts, more than 200 book chapters, 8 books, and more than 300 published abstracts and scientific presentations. The use of GKS has become a well-established surgical technique that has been performed more than 700,000 times around the world.

Conclusions

The development of a patient registry to track and analyze the use of GKS has given investigators the ability to study patient procedures and outcomes. The future of clinical medical research will rely on the ability of clinical centers to store and to share information.

Restricted access

Hideyuki Kano, Douglas Kondziolka, John C. Flickinger, Kyung-Jae Park, Aditya Iyer, Huai-che Yang, Xiaomin Liu, Edward A. Monaco III, Ajay Niranjan and L. Dade Lunsford

Object

In this paper the authors' goal was to define the long-term benefits and risks of stereotactic radiosurgery (SRS) for patients with arteriovenous malformations (AVMs) who underwent prior embolization.

Methods

Between 1987 and 2006, the authors performed Gamma Knife surgery in 996 patients with brain AVMs; 120 patients underwent embolization followed by SRS. In this series, 64 patients (53%) had at least one prior hemorrhage. The median number of embolizations varied from 1 to 5. The median target volume was 6.6 cm3 (range 0.2–26.3 cm3). The median margin dose was 18 Gy (range 13.5–25 Gy).

Results

After embolization, 25 patients (21%) developed symptomatic neurological deficits. The overall rates of total obliteration documented by either angiography or MRI were 35%, 53%, 55%, and 59% at 3, 4, 5, and 10 years, respectively. Factors associated with a higher rate of AVM obliteration were smaller target volume, smaller maximum diameter, higher margin dose, timing of embolization during the most recent 10-year period (1997–2006), and lower Pollock-Flickinger score. Nine patients (8%) had a hemorrhage during the latency period, and 7 patients died of hemorrhage. The actuarial rates of AVM hemorrhage after SRS were 0.8%, 3.5%, 5.4%, 7.7%, and 7.7% at 1, 2, 3, 5, and 10 years, respectively. The overall annual hemorrhage rate was 2.7%. Factors associated with a higher risk of hemorrhage after SRS were a larger target volume and a larger number of prior hemorrhages. Permanent neurological deficits due to adverse radiation effects (AREs) developed in 3 patients (2.5%) after SRS, and 1 patient had delayed cyst formation 210 months after SRS. No patient died of AREs. A larger 12-Gy volume was associated with higher risk of symptomatic AREs. Using a case-control matched approach, the authors found that patients who underwent embolization prior to SRS had a lower rate of total obliteration (p = 0.028) than patients who had not undergone embolization.

Conclusions

In this 20-year experience, the authors found that prior embolization reduced the rate of total obliteration after SRS, and that the risks of hemorrhage during the latency period were not affected by prior embolization. For patients who underwent embolization to volumes smaller than 8 cm3, success was significantly improved. A margin dose of 18 Gy or more also improved success. In the future, the role of embolization after SRS should be explored.