Browse

You are looking at 1 - 10 of 18 items for

  • By Author: Kalani, M. Yashar S. x
  • By Author: Martirosyan, Nikolay L. x
Clear All
Open access

M. Yashar S. Kalani, Kaan Yağmurlu, Nikolay L. Martirosyan and Robert F. Spetzler

The lateral supracerebellar infratentorial (SCIT) approach provides advantageous access to lesions located in the lateral mesencephalon and mesencephalopontine junction. For lesions that abut the pial surface, a direct approach is ideal and well tolerated. For deep-seated lesions, the lateral mesencephalic sulcus (LMS) can be used to access lesions with minimal morbidity to the patient. This video demonstrates the use of the SCIT approach via the LMS to remove a cavernous malformation at the level of the mesencephalopontine junction. The use of somatosensory and motor evoked potential monitoring and intraoperative neuronavigation is essential for optimizing patient outcomes. Meticulous, multilayered closure is critical for optimal results in the posterior fossa. For optimal patient outcomes, approach selection for deep-seated lesions should combine the two-point method with safe entry zones. At follow-up, the patient had persistent sensory changes but was otherwise neurologically intact.

The video can be found here: https://youtu.be/bHFEZhG8dHw.

Open access

M. Yashar S. Kalani, Kaan Yağmurlu, Nikolay L. Martirosyan and Robert F. Spetzler

Dorsal pons lesions at the facial colliculus level can be accessed with a suboccipital telovelar (SOTV) approach using the superior fovea safe entry zone. Opening the telovelar junction allows visualization of the dorsal pons and lateral entry at the level of the fourth ventricle floor. Typically, a lateral entry into the floor of the fourth ventricle is better tolerated than a midline opening. This video demonstrates the use of the SOTV approach to remove a cavernous malformation at the level of the facial colliculus. This case is particularly interesting because of a large venous anomaly and several telangiectasias in the pons. Dissections in the video are reproduced with permission from the Rhoton Collection (http://rhoton.ineurodb.org).

The video can be found here: https://youtu.be/LqzCfN2J3lY.

Restricted access

Corey T. Walker, M. Yashar S. Kalani, Mark E. Oppenlander, Jakub Godzik, Nikolay L. Martirosyan, Robert J. Standerfer and Nicholas Theodore

OBJECTIVE

The authors report a novel paradigm for resection of the disc or dural complex to treat giant calcified transdural herniated thoracic discs, and they describe a technique for the repair of dural defects. These herniated thoracic discs are uncommon, complicated lesions that often require a multidisciplinary team for effective treatment. The intradural component must be removed to effectively decompress the spinal cord. The opening of the friable dura mater, which frequently adheres to the extradural component of the disc, can result in large defects and difficult-to-manage CSF leaks.

METHODS

The authors performed a retrospective study of the technique and outcomes in patients with a transdural herniated disc treated at St. Joseph’s Hospital and Medical Center within a 4-year period between 2012 and 2015.

RESULTS

During the study period, 7 patients (mean age 56.1 years) presented to the department of neurosurgery with clinical symptoms consistent with myeloradiculopathy. In all cases, 2-level corpectomies of the involved levels were combined with circumferential resection of the dura and complete decompression of the spinal cord. The dural defect was repaired with an onlay dural patch, and a large piece of AlloDerm (LifeCell Corp) graft was sewn to close the pleural defect. Every patient had a perioperative lumbar drain placed for CSF diversion. No patient suffered neurological decline related to the surgery, and 3 patients experienced clinically significant improvement in function. Two patients developed an early postoperative CSF leak that required operative revision to oversew the defects.

CONCLUSIONS

This novel technique for decompression of the spinal cord by dural resection for the removal of giant calcified transdural herniated thoracic discs is safe and results in excellent decompression of the spinal cord. The technique becomes necessary when primary repair of the dura is not possible, and it can be used in cases in which the resection of pathology includes the dura.

Full access

M. Yashar S. Kalani, John E. Wanebo, Nikolay L. Martirosyan, Peter Nakaji, Joseph M. Zabramski and Robert F. Spetzler

Full access

M. Yashar S. Kalani, Kaan Yagmurlu, Nikolay L. Martirosyan, Daniel D. Cavalcanti and Robert F. Spetzler

Free access

Nikolay L. Martirosyan, Jennifer M. Eschbacher, M. Yashar S. Kalani, Jay D. Turner, Evgenii Belykh, Robert F. Spetzler, Peter Nakaji and Mark C. Preul

OBJECTIVE

This study evaluated the utility, specificity, and sensitivity of intraoperative confocal laser endomicroscopy (CLE) to provide diagnostic information during resection of human brain tumors.

METHODS

CLE imaging was used in the resection of intracranial neoplasms in 74 consecutive patients (31 male; mean age 47.5 years; sequential 10-month study period). Intraoperative in vivo and ex vivo CLE was performed after intravenous injection of fluorescein sodium (FNa). Tissue samples from CLE imaging–matched areas were acquired for comparison with routine histological analysis (frozen and permanent sections). CLE images were classified as diagnostic or nondiagnostic. The specificities and sensitivities of CLE and frozen sections for gliomas and meningiomas were calculated using permanent histological sections as the standard.

RESULTS

CLE images were obtained for each patient. The mean duration of intraoperative CLE system use was 15.7 minutes (range 3–73 minutes). A total of 20,734 CLE images were correlated with 267 biopsy specimens (mean number of images/biopsy location, in vivo 84, ex vivo 70). CLE images were diagnostic for 45.98% in vivo and 52.97% ex vivo specimens. After initiation of CLE, an average of 14 in vivo images and 7 ex vivo images were acquired before identification of a first diagnostic image. CLE specificity and sensitivity were, respectively, 94% and 91% for gliomas and 93% and 97% for meningiomas.

CONCLUSIONS

CLE with FNa provided intraoperative histological information during brain tumor removal. Specificities and sensitivities of CLE for gliomas and meningiomas were comparable to those for frozen sections. These data suggest that CLE could allow the interactive identification of tumor areas, substantially improving intraoperative decisions during the resection of brain tumors.

Free access

Nikolay L. Martirosyan, M. Yashar S. Kalani, Peter Nakaji and Robert F. Spetzler

The anterior interhemispheric approach is a workhorse for treatment of lesions in the third ventricle. In this case, we demonstrate the utility of this approach for resecting a complex third ventricular cavernous malformation. We discuss patient positioning, optimal location of the craniotomy, and surgical resection techniques for safe removal of these lesions. We also demonstrate the importance of gravity retraction using the falx to prevent injury to the dominant frontal lobe.

The video can be found here: https://youtu.be/38woc28er7M.

Free access

M. Yashar S. Kalani, Ting Lei, Nikolay L. Martirosyan, Mark E. Oppenlander, Robert F. Spetzler and Peter Nakaji

The mesial temporal lobe can be approached via a pterional or orbitozygomatic craniotomy, the subtemporal approach, or transcortically. Alternatively, the entire mesial temporal lobe can be accessed using a lateral supracerebellar transtentorial (SCTT) approach. Here we describe the technical nuances of patient positioning, craniotomy, supracerebellar dissection, and tentorial disconnection to traverse the tentorial incisura to arrive at the posterior mesial temporal lobe for a cavernous malformation. The SCTT approach is especially useful for lesions in the dominant temporal lobe where an anterolateral approach may endanger language centers or the vein of Labbé.

The video can be found here: https://youtu.be/D8mIR5yeiVw.

Free access

M. Yashar S. Kalani, Nikolay L. Martirosyan, Peter Nakaji and Robert F. Spetzler

The supracerebellar infratentorial approach provides access to the dorsal midbrain, pineal region, and tentorial incisura. This approach can be used with the patient in a sitting, prone, park-bench, or supine position. For a patient with a supple neck and favorable anatomy, we prefer the supine position. The ipsilateral shoulder is elevated, the head turned to the contralateral side, the chin is tucked, and the neck extended toward the floor to open the craniocervical angle for added working room. Care must be taken to place the craniotomy laterally to make use of the ascending angle of the tentorium for ease of access to deep-seated lesions.

The video can be found here: https://youtu.be/BZh6ljmE23k.

Full access

Nikolay L. Martirosyan, M. Yashar S. Kalani, G. Michael Lemole Jr., Robert F. Spetzler, Mark C. Preul and Nicholas Theodore

OBJECT

The arterial basket of the conus medullaris (ABCM) consists of 1 or 2 arteries arising from the anterior spinal artery (ASA) and circumferentially connecting the ASA and the posterior spinal arteries (PSAs). The arterial basket can be involved in arteriovenous fistulas and arteriovenous malformations of the conus. In this article, the authors describe the microsurgical anatomy of the ABCM with emphasis on its morphometric parameters and important role in the intrinsic blood supply of the conus medullaris.

METHODS

The authors performed microsurgical dissections on 16 formalin-fixed human spinal cords harvested within 24 hours of death. The course, diameter, and branching angles of the arteries comprising the ABCM were then identified and measured. In addition, histological sections were obtained to identify perforating vessels arising from the ABCM.

RESULTS

The ASA tapers as it nears the conus medullaris (mean preconus diameter 0.7 ± 0.12 mm vs mean conus diameter 0.38 ± 0.08 mm). The ASA forms an anastomotic basket with the posterior spinal artery (PSA) via anastomotic branches. In most of the specimens (n= 13, 81.3%), bilateral arteries formed connections between the ASA and PSA. However, in the remaining specimens (n= 3, 18.7%), a unilateral right-sided anastomotic artery was identified. The mean diameter of the right ABCM branch was 0.49 ± 0.13 mm, and the mean diameter of the left branch was 0.53 ± 0.14 mm. The mean branching angles of the arteries forming the anastomotic basket were 95.9° ± 36.6° and 90° ± 34.3° for the right- and left-sided arteries, respectively. In cases of bilateral arterial anastomoses between the ASA and PSA, the mean distance between the origins of the arteries was 4.5 ± 3.3 mm. Histological analysis revealed numerous perforating vessels supplying tissue of the conus medullaris.

CONCLUSIONS

The ABCM is a critical anastomotic connection between the ASA and PSA, which play an important role in the intrinsic blood supply of the conus medullaris. The ABCM provides an important compensatory function in the blood supply of the spinal cord. Its involvement in conus medullaris vascular malformations makes it a critical anatomical structure.