Browse

You are looking at 1 - 2 of 2 items for :

  • Journal of Neurosurgery: Spine x
  • By Author: Jallo, George I. x
  • By Author: Chaput, Christopher x
Clear All Modify Search
Restricted access

Ryan M. Kretzer, Christopher Chaput, Daniel M. Sciubba, Ira M. Garonzik, George I. Jallo, Paul C. McAfee, Bryan W. Cunningham and P. Justin Tortolani

Object

The objective of this study was to establish normative data for thoracic pedicle anatomy in the US adult population. To this end, CT scans chosen at random from an adult database were evaluated to determine the ideal pedicle screw (PS) length, diameter, trajectory, and starting point in the thoracic spine. The role of patient sex and side of screw placement were also assessed. The authors postulated that this information would be of value in guiding safe implant size and placement for surgeons in training.

Methods

One hundred patients (50 males and 50 females) were selected via retrospective review of a hospital trauma registry database over a 6-month period. Patients included in the study were older than 18 years of age, had axial bone-window CT images of the thoracic spine, and had no evidence of spinal trauma. For each pedicle, the pedicle width, pedicle-rib width, estimated screw length, trajectory, and ideal entry point were measured using eFilm Lite software. Statistical analysis was performed using the Student t-test.

Results

The shortest mean estimated PS length was at T-1 (33.9 ± 3.3 mm), and the longest was at T-9 (44.9 ± 4.4 mm). Pedicle screw length was significantly affected by patient sex; men could accommodate a PS from T1–12 a mean of 4.0 ± 1.0 mm longer than in women (p < 0.001). Pedicle width showed marked variation by spinal level, with T-4 (4.4 ± 1.1 mm) having the narrowest width and T-12 (8.3 ± 1.7 mm) having the widest. Pedicle width had an obvious affect on potential screw diameter; 65% of patients had a least 1 pedicle at T-4 that was < 5 mm in diameter and therefore would not accept a 4.0-mm screw with 1.0 mm of clearance, as compared with only 2% of patients with a similar status at T-12. Sex variation was also apparent, as thoracic pedicles from T-1 to T-12 were a mean of 1.4 ± 0.2 mm wider in men than in women (p < 0.001). The PS trajectory in the axial plane was measured, showing a marked decrease from T-1 to T-4, stabilization from T-5 to T-10, followed by a decrease at T11–12. When screw trajectory was stratified by side of placement, a mean of 1.7° ± 0.5° of increased medialization was required for ideal pedicle cannulation from T-3 to T-12 on the left as compared with the right side, presumably because of developmental changes in the vertebral body caused by the aorta (p < 0.05 for T3–12, except for T-5, where p = 0.051). The junction of the superior articular process, lamina, and the superior ridge of the transverse process was shown to be a conserved surface landmark for PS placement.

Conclusions

Preoperative CT evaluation is important in choosing PS length, diameter, trajectory, and entry point due to variation based on spinal level, patient sex, and side of placement. These data are valuable for resident and fellow training to guide the safe use of thoracic PSs.

Restricted access

Ryan M. Kretzer, Christopher Chaput, Daniel M. Sciubba, Ira M. Garonzik, George I. Jallo, Paul C. McAfee, Bryan W. Cunningham and P. Justin Tortolani

Object

Translaminar screws (TLSs) offer an alternative to pedicle screw (PS) fixation in the upper thoracic spine. Although cadaveric studies have described the anatomy of the laminae and pedicles at T1–2, CT imaging is the modality of choice for presurgical planning. In this study, the goal was to determine the diameter, maximal screw length, and optimal screw trajectory for TLS placement at T1–2, and to compare this information to PS placement in the upper thoracic spine as determined by CT evaluation.

Methods

One hundred patients (50 men and 50 women), whose average age was 41.7 ± 19.6 years, were selected by retrospective review of a trauma registry database over a 6-month period. Patients were included in the study if they were over the age of 18, had standardized axial bone-window CT imaging at T1–2, and had no evidence of spinal trauma. For each lamina and pedicle, width (outer cortical and cancellous), maximal screw length, and optimal screw trajectory were measured using eFilm Lite software. Statistical analysis was performed using the Student t-test.

Results

The T-1 lamina was estimated to accommodate, on average, a 5.8-mm longer screw than the T-2 lamina (p < 0.001). At T-1, the maximal TLS length was similar to PS length (TLS: 33.4 ± 3.6 mm, PS: 33.9 ± 3.3 mm [p = 0.148]), whereas at T-2, the maximal PS length was significantly greater than the TLS length (TLS: 27.6 ± 3.1 mm, PS: 35.3 ± 3.5 mm [p < 0.001]). When the lamina outer cortical and cancellous width was compared between T-1 and T-2, the lamina at T-2 was, on average, 0.3 mm wider than at T-1 (p = 0.007 and p = 0.003, respectively). In comparison with the corresponding pedicle, the mean outer cortical pedicle width at T-1 was wider than the lamina by an average of 1.0 mm (lamina: 6.6 ± 1.1 mm, pedicle: 7.6 ± 1.3 mm [p < 0.001]). At T-2, however, outer cortical lamina width was wider than the corresponding pedicle by an average of 0.6 mm (lamina: 6.9 ± 1.1 mm, pedicle: 6.3 ± 1.2 mm [p < 0.001]). At T-1, 97.5% of laminae measured could accept a 4.0-mm screw with 1.0 mm of clearance, compared with 99.5% of T-1 pedicles; whereas at T-2, 99% of laminae met this requirement, compared with 94.5% of pedicles. The ideal screw trajectory was also measured (T-1: 49.2 ± 3.7° for TLS and 32.8 ± 3.8° for PS; T-2: 51.1 ± 3.5° for TLS and 20.5 ± 4.4° for PS).

Conclusions

Based on CT evaluation, there are no anatomical limitations to the placement of TLSs compared with PSs at T1–2. Differences were noted, however, in lamina length and width between T-1 and T-2 that must be considered when placing TLS at these levels.