Browse

You are looking at 1 - 5 of 5 items for

  • By Author: Drake, James M. x
  • By Author: Oakes, W. Jerry x
Clear All
Free access

William E. Whitehead, Jay Riva-Cambrin, Abhaya V. Kulkarni, John C. Wellons III, Curtis J. Rozzelle, Mandeep S. Tamber, David D. Limbrick Jr., Samuel R. Browd, Robert P. Naftel, Chevis N. Shannon, Tamara D. Simon, Richard Holubkov, Anna Illner, D. Douglas Cochrane, James M. Drake, Thomas G. Luerssen, W. Jerry Oakes and John R. W. Kestle

OBJECTIVE

Accurate placement of ventricular catheters may result in prolonged shunt survival, but the best target for the hole-bearing segment of the catheter has not been rigorously defined. The goal of the study was to define a target within the ventricle with the lowest risk of shunt failure.

METHODS

Five catheter placement variables (ventricular catheter tip location, ventricular catheter tip environment, relationship to choroid plexus, catheter tip holes within ventricle, and crosses midline) were defined, assessed for interobserver agreement, and evaluated for their effect on shunt survival in univariate and multivariate analyses. De-identified subjects from the Shunt Design Trial, the Endoscopic Shunt Insertion Trial, and a Hydrocephalus Clinical Research Network study on ultrasound-guided catheter placement were combined (n = 858 subjects, all first-time shunt insertions, all patients < 18 years old). The first postoperative brain imaging study was used to determine ventricular catheter placement for each of the catheter placement variables.

RESULTS

Ventricular catheter tip location, environment, catheter tip holes within the ventricle, and crosses midline all achieved sufficient interobserver agreement (κ > 0.60). In the univariate survival analysis, however, only ventricular catheter tip location was useful in distinguishing a target within the ventricle with a survival advantage (frontal horn; log-rank, p = 0.0015). None of the other catheter placement variables yielded a significant survival advantage unless they were compared with catheter tips completely not in the ventricle. Cox regression analysis was performed, examining ventricular catheter tip location with age, etiology, surgeon, decade of surgery, and catheter entry site (anterior vs posterior). Only age (p < 0.001) and entry site (p = 0.005) were associated with shunt survival; ventricular catheter tip location was not (p = 0.37). Anterior entry site lowered the risk of shunt failure compared with posterior entry site by approximately one-third (HR 0.65, 95% CI 0.51–0.83).

CONCLUSIONS

This analysis failed to identify an ideal target within the ventricle for the ventricular catheter tip. Unexpectedly, the choice of an anterior versus posterior catheter entry site was more important in determining shunt survival than the location of the ventricular catheter tip within the ventricle. Entry site may represent a modifiable risk factor for shunt failure, but, due to inherent limitations in study design and previous clinical research on entry site, a randomized controlled trial is necessary before treatment recommendations can be made.

Free access

William E. Whitehead, Jay Riva-Cambrin, John C. Wellons III, Abhaya V. Kulkarni, Samuel Browd, David Limbrick, Curtis Rozzelle, Mandeep S. Tamber, Tamara D. Simon, Chevis N. Shannon, Richard Holubkov, W. Jerry Oakes, Thomas G. Luerssen, Marion L. Walker, James M. Drake and John R. W. Kestle

Object

Shunt survival may improve when ventricular catheters are placed into the frontal horn or trigone of the lateral ventricle. However, techniques for accurate catheter placement have not been developed. The authors recently reported a prospective study designed to test the accuracy of catheter placement with the assistance of intraoperative ultrasound, but the results were poor (accurate placement in 59%). A major reason for the poor accurate placement rate was catheter movement that occurred between the time of the intraoperative ultrasound image and the first postoperative scan (33% of cases). The control group of non–ultrasound using surgeons also had a low rate of accurate placement (accurate placement in 49%). The authors conducted an exploratory post hoc analysis of patients in their ultrasound study to identify factors associated with either catheter movement or poor catheter placement so that improved surgical techniques for catheter insertion could be developed.

Methods

The authors investigated the following risk factors for catheter movement and poor catheter placement: age, ventricular size, cortical mantle thickness, surgeon experience, surgeon experience with ultrasound prior to trial, shunt entry site, shunt hardware at entry site, ventricular catheter length, and use of an ultrasound probe guide for catheter insertion. Univariate analysis followed by multivariate logistic regression models were used to determine which factors were independent risk factors for either catheter movement or inaccurate catheter location.

Results

In the univariate analyses, only age < 6 months was associated with catheter movement (p = 0.021); cortical mantle thickness < 1 cm was near-significant (p = 0.066). In a multivariate model, age remained significant after adjusting for cortical mantle thickness (OR 8.35, exact 95% CI 1.20–infinity). Univariate analyses of factors associated with inaccurate catheter placement showed that age < 6 months (p = 0.001) and a posterior shunt entry site (p = 0.021) were both associated with poor catheter placement. In a multivariate model, both age < 6 months and a posterior shunt entry site were independent risk factors for poor catheter placement (OR 4.54, 95% CI 1.80–11.42, and OR 2.59, 95% CI 1.14–5.89, respectively).

Conclusions

Catheter movement and inaccurate catheter placement are both more likely to occur in young patients (< 6 months). Inaccurate catheter placement is also more likely to occur in cases involving a posterior shunt entry site than those involving an anterior shunt entry site. Future clinical studies aimed at improving shunt placement techniques must consider the effects of young age and choice of entry site on catheter location.

Restricted access

William E. Whitehead, Jay Riva-Cambrin, John C. Wellons III, Abhaya V. Kulkarni, Richard Holubkov, Anna Illner, W. Jerry Oakes, Thomas G. Luerssen, Marion L. Walker, James M. Drake and John R. W. Kestle

Object

Cerebrospinal fluid shunt ventricular catheters inserted into the frontal horn or trigone are associated with prolonged shunt survival. Developing surgical techniques for accurate catheter insertion could, therefore, be beneficial to patients. This study was conducted to determine if the rate of accurate catheter location with intraoperative ultrasound guidance could exceed 80%.

Methods

The authors conducted a prospective, multicenter study of children (< 18 years) requiring first-time treatment for hydrocephalus with a ventriculoperitoneal shunt. Using intraoperative ultrasound, surgeons were required to target the frontal horn or trigone for catheter tip placement. An intraoperative ultrasound image was obtained at the time of catheter insertion. Ventricular catheter location, the primary outcome measure, was determined from the first postoperative image. A control group of patients treated by nonultrasound surgeons (conventional surgeons) were enrolled using the same study criteria. Conventional shunt surgeons also agreed to target the frontal horn or trigone for all catheter insertions. Patients were triaged to participating surgeons based on call schedules at each center. A pediatric neuroradiologist blinded to method of insertion, center, and surgeon determined ventricular catheter tip location.

Results

Eleven surgeons enrolled as ultrasound surgeons and 6 as conventional surgeons. Between February 2009 and February 2010, 121 patients were enrolled at 4 Hydrocephalus Clinical Research Network centers. Experienced ultrasound surgeons (> 15 cases prior to study) operated on 67 patients; conventional surgeons operated on 52 patients. Experienced ultrasound surgeons achieved accurate catheter location in 39 (59%) of 66 patients, 95% CI (46%–71%). Intraoperative ultrasound images were compared with postoperative scans. In 32.7% of cases, the catheter tip moved from an accurate location on the intraoperative ultrasound image to an inaccurate location on the postoperative study. This was the most significant factor affecting accuracy. In comparison, conventional surgeons achieved accurate location in 24 (49.0%) of 49 cases (95% CI [34%–64%]). The shunt survival rate at 1 year was 70.8% in the experienced ultrasound group and 66.9% in the conventional group (p = 0.66). Ultrasound surgeons had more catheters surrounded by CSF (30.8% vs 6.1%, p = 0.0012) and away from the choroid plexus (72.3% vs 58.3%, p = 0.12), and fewer catheters in the brain (3% vs 22.4%, p = 0.0011) and crossing the midline (4.5% vs 34.7%, p < 0.001), but they had a higher proportion of postoperative pseudomeningocele (10.1% vs 3.8%, p = 0.30), wound dehiscence (5.8% vs 0%, p = 0.13), CSF leak (10.1% vs 1.9%, p = 0.14), and shunt infection (11.6% vs 5.8%, p = 0.35).

Conclusions

Ultrasound-guided shunt insertion as performed in this study was unable to consistently place catheters into the frontal horn or trigone. The technique is safe and achieves outcomes similar to other conventional shunt insertion techniques. Further efforts to improve accurate catheter location should focus on prevention of catheter migration that occurs between intraoperative placement and postoperative imaging. Clinical trial registration no.: NCT01007786 (ClinicalTrials.gov).

Restricted access

John R. W. Kestle, Jay Riva-Cambrin, John C. Wellons III, Abhaya V. Kulkarni, William E. Whitehead, Marion L. Walker, W. Jerry Oakes, James M. Drake, Thomas G. Luerssen, Tamara D. Simon and Richard Holubkov

Object

Quality improvement techniques are being implemented in many areas of medicine. In an effort to reduce the ventriculoperitoneal shunt infection rate, a standardized protocol was developed and implemented at 4 centers of the Hydrocephalus Clinical Research Network (HCRN).

Methods

The protocol was developed sequentially by HCRN members using the current literature and prior institutional experience until consensus was obtained. The protocol was prospectively applied at each HCRN center to all children undergoing a shunt insertion or revision procedure. Infections were defined on the basis of CSF, wound, or pseudocyst cultures; wound breakdown; abdominal pseudocyst; or positive blood cultures in the presence of a ventriculoatrial shunt. Procedures and infections were measured before and after protocol implementation.

Results

Twenty-one surgeons at 4 centers performed 1571 procedures between June 1, 2007, and February 28, 2009. The minimum follow-up was 6 months. The Network infection rate decreased from 8.8% prior to the protocol to 5.7% while using the protocol (p = 0.0028, absolute risk reduction 3.15%, relative risk reduction 36%). Three of 4 centers lowered their infection rate. Shunt surgery after external ventricular drainage (with or without prior infection) had the highest infection rate. Overall protocol compliance was 74.5% and improved over the course of the observation period. Based on logistic regression analysis, the use of BioGlide catheters (odds ratio [OR] 1.91, 95% CI 1.19–3.05; p = 0.007) and the use of antiseptic cream by any members of the surgical team (instead of a formal surgical scrub by all members of the surgical team; OR 4.53, 95% CI 1.43–14.41; p = 0.01) were associated with an increased risk of infection.

Conclusions

The standardized protocol for shunt surgery significantly reduced shunt infection across the HCRN. Overall protocol compliance was good. The protocol has established a common baseline within the Network, which will facilitate assessment of new treatments. Identification of factors associated with infection will allow further protocol refinement in the future.

Restricted access

John C. Wellons III, Chevis N. Shannon, Abhaya V. Kulkarni, Tamara D. Simon, Jay Riva-Cambrin, William E. Whitehead, W. Jerry Oakes, James M. Drake, Thomas G. Luerssen, Marion L. Walker, John R. W. Kestle and for the Hydrocephalus Clinical Research Network

Object

The purpose of this study was to define the incidence of permanent shunt placement and infection in patients who have undergone the 2 most commonly performed temporizing procedures for posthemorrhagic hydrocephalus (PHH) of prematurity: ventriculosubgaleal (VSG) shunt placement and ventricular reservoir placement for intermittent tapping.

Methods

The 4 centers of the Hydrocephalus Clinical Research Network participated in a retrospective chart review of infants with PHH who underwent treatment at each institution between 2001 and 2006. Patients were included if they had received a diagnosis of Grade 3 or 4 intraventricular hemorrhage, weighed < 1500 g at birth, and had received surgical intervention. The authors determined the incidence of conversion from a temporizing device to a permanent shunt, the incidence of CSF infection during temporization, and the 6-month CSF infection rate after permanent shunt placement.

Results

Thirty-one (86%) of 36 patients who received VSG shunts and 61 (69%) of 88 patients who received ventricular reservoirs received permanent CSF diversion with a shunt (p = 0.05). Five patients (14%) in the VSG shunt group had CSF infections during temporization, compared with 11 patients (13%) in the ventricular reservoir group (p = 0.83). The 6-month incidence of permanent shunt infection in the VSG shunt group was 16% (5 of 31), compared with 12% (7 of 61) in the reservoir placement group (p = 0.65). For the first 6 months after permanent shunt placement, infants with no preceding temporizing procedure had an infection rate of 5% (1 of 20 infants) and those who had undergone a temporizing procedure had an infection rate of 13% (12 of 92; p = 0.45).

Conclusions

The use of intermittent tapping of ventricular reservoirs in this population appears to lead to a lower incidence of permanent shunt placement than the use of VSG shunts. The incidence of infection during temporization and for the initial 6 months after conversion appears comparable for both groups. The apparent difference identified in this pilot study requires confirmation in a more rigorous study.