You are looking at 1 - 1 of 1 items for

  • By Author: Darcey, Terrance M. x
  • By Author: Krauss, Patricia J. x
Clear All
Free access

Terrance M. Darcey, Erik J. Kobylarz, Michael A. Pearl, Patricia J. Krauss, Stephanie A. Ferri, David W. Roberts and David F. Bauer


The purpose of this study was to develop safe, site-specific procedures for placing and leaving subdermal needle leads for intraoperative monitoring (IOM) during intraoperative MRI procedures.


The authors tested a variety of standard subdermal needle electrodes designed and FDA-approved for IOM in the conventional operating room. Testing was used to determine the conditions necessary to avoid thermal injury and significant image artifacts with minimal disruption of IOM and MRI procedures. Phantom testing was performed with a fiber optic (lead) temperature monitoring system and was followed by testing of leads placed in a healthy volunteer. The volunteer testing used electrode placements typical of standard IOM cases, together with radiofrequency (RF) coil placement and imaging sequences routinely employed for these case types. Lead length was investigated to assess heating effects for electrodes placed within the RF coil.


The authors found that conventional stainless steel (SS) and platinum/iridium (Pt/Ir) subdermal needles can be used safely without significant heating when placed outside the RF coil, and this accounts for the majority or entirety of electrode placements. When placed within the RF coil, Pt/Ir leads produced minimal image artifacts, while SS leads produced potentially significant artifacts. In phantom testing, significant heating was demonstrated in both SS and Pt/Ir leads placed within the RF coil, but only during high-resolution T2-weighted scanning. This problem was largely, but not completely, eliminated when leads were shortened to 25 cm. Human testing was unremarkable except for nonpainful heating detected in a few electrodes during thin-slice (1.5 mm) FLAIR scanning. Transient irritation (skin reddening along the needle tract) was noted at 2 of the electrodes with detectable heating.


The authors were satisfied with the safety of their site-specific procedures and have begun with off-label use (following institutional review board approval and obtaining patient informed consent) of tested monitoring leads in cases that combine IOM and MRI. The authors recommend that all facilities perform their own site-specific testing of monitoring leads before proceeding with their routine use.