Browse

You are looking at 11 - 20 of 52 items for

  • By Author: Bess, Shay x
Clear All
Free access

Taemin Oh, Justin K. Scheer, Justin S. Smith, Richard Hostin, Chessie Robinson, Jeffrey L. Gum, Frank Schwab, Robert A. Hart, Virginie Lafage, Douglas C. Burton, Shay Bess, Themistocles Protopsaltis, Eric O. Klineberg, Christopher I. Shaffrey, Christopher P. Ames and the International Spine Study Group

OBJECTIVE

Patients with adult spinal deformity (ASD) experience significant quality of life improvements after surgery. Treatment, however, is expensive and complication rates are high. Predictive analytics has the potential to use many variables to make accurate predictions in large data sets. A validated minimum clinically important difference (MCID) model has the potential to assist in patient selection, thereby improving outcomes and, potentially, cost-effectiveness.

METHODS

The present study was a retrospective analysis of a multiinstitutional database of patients with ASD. Inclusion criteria were as follows: age ≥ 18 years, radiographic evidence of ASD, 2-year follow-up, and preoperative Oswestry Disability Index (ODI) > 15. Forty-six variables were used for model training: demographic data, radiographic parameters, surgical variables, and results on the health-related quality of life questionnaire. Patients were grouped as reaching a 2-year ODI MCID (+MCID) or not (−MCID). An ensemble of 5 different bootstrapped decision trees was constructed using the C5.0 algorithm. Internal validation was performed via 70:30 data split for training/testing. Model accuracy and area under the curve (AUC) were calculated. The mean quality-adjusted life years (QALYs) and QALYs gained at 2 years were calculated and discounted at 3.5% per year. The QALYs were compared between patients in the +MCID and –MCID groups.

RESULTS

A total of 234 patients met inclusion criteria (+MCID 129, −MCID 105). Sixty-nine patients (29.5%) were included for model testing. Predicted versus actual results were 50 versus 40 for +MCID and 19 versus 29 for −MCID (i.e., 10 patients were misclassified). Model accuracy was 85.5%, with 0.96 AUC. Predicted results showed that patients in the +MCID group had significantly greater 2-year mean QALYs (p = 0.0057) and QALYs gained (p = 0.0002).

CONCLUSIONS

A successful model with 85.5% accuracy and 0.96 AUC was constructed to predict which patients would reach ODI MCID. The patients in the +MCID group had significantly higher mean 2-year QALYs and QALYs gained. This study provides proof of concept for using predictive modeling techniques to optimize patient selection in complex spine surgery.

Full access

Justin S. Smith, Christopher I. Shaffrey, Eric Klineberg, Virginie Lafage, Frank Schwab, Renaud Lafage, Han Jo Kim, Richard Hostin, Gregory M. Mundis Jr., Munish Gupta, Barthelemy Liabaud, Justin K. Scheer, Bassel G. Diebo, Themistocles S. Protopsaltis, Michael P. Kelly, Vedat Deviren, Robert Hart, Doug Burton, Shay Bess and Christopher P. Ames

OBJECTIVE

Although 3-column osteotomy (3CO) can provide powerful alignment correction in adult spinal deformity (ASD), these procedures are complex and associated with high complication rates. The authors' objective was to assess complications associated with ASD surgery that included 3CO based on a prospectively collected multicenter database.

METHODS

This study is a retrospective review of a prospectively collected multicenter consecutive case registry. ASD patients treated with 3CO and eligible for 2-year follow-up were identified from a prospectively collected multicenter ASD database. Early (≤ 6 weeks after surgery) and delayed (> 6 weeks after surgery) complications were collected using standardized forms and on-site coordinators.

RESULTS

Of 106 ASD patients treated with 3CO, 82 (77%; 68 treated with pedicle subtraction osteotomy [PSO] and 14 treated with vertebral column resection [VCR]) had 2-year follow-up (76% women, mean age 60.7 years, previous spine fusion in 80%). The mean number of posterior fusion levels was 12.9, and 17% also had an anterior fusion. A total of 76 early (44 minor, 32 major) and 66 delayed (13 minor, 53 major) complications were reported, with 41 patients (50.0%) and 45 patients (54.9%) affected, respectively. Overall, 64 patients (78.0%) had at least 1 complication, and 50 (61.0%) had at least 1 major complication. The most common complications were rod breakage (31.7%), dural tear (20.7%), radiculopathy (9.8%), motor deficit (9.8%), proximal junctional kyphosis (PJK, 9.8%), pleural effusion (8.5%), and deep wound infection (7.3%). Compared with patients who did not experience early or delayed complications, those who had these complications did not differ significantly with regard to age, sex, body mass index, Charlson Comorbidity Index, American Society of Anesthesiologists score, smoking status, history of previous spine surgery or spine fusion, or whether the 3CO performed was a PSO or VCR (p ≥ 0.06). Twenty-seven (33%) patients had 1–11 reoperations (total of 44 reoperations). The most common indications for reoperation were rod breakage (n = 14), deep wound infection (n = 15), and PJK (n = 6). The 24 patients who did not achieve 2-year follow-up had a mean of 0.85 years of follow-up, and the types of early and delayed complications encountered in these 24 patients were comparable to those encountered in the patients that achieved 2-year follow-up.

CONCLUSIONS

Among 82 ASD patients treated with 3CO, 64 (78.0%) had at least 1 early or delayed complication (57 minor, 85 major). The most common complications were instrumentation failure, dural tear, new neurological deficit, PJK, pleural effusion, and deep wound infection. None of the assessed demographic or surgical parameters were significantly associated with the occurrence of complications. These data may prove useful for surgical planning, patient counseling, and efforts to improve the safety and cost-effectiveness of these procedures.

Full access

Justin K. Scheer, Justin S. Smith, Frank Schwab, Virginie Lafage, Christopher I. Shaffrey, Shay Bess, Alan H. Daniels, Robert A. Hart, Themistocles S. Protopsaltis, Gregory M. Mundis Jr., Daniel M. Sciubba, Tamir Ailon, Douglas C. Burton, Eric Klineberg, Christopher P. Ames and The International Spine Study Group

OBJECTIVE

The operative management of patients with adult spinal deformity (ASD) has a high complication rate and it remains unknown whether baseline patient characteristics and surgical variables can predict early complications (intraoperative and perioperative [within 6 weeks]). The development of an accurate preoperative predictive model can aid in patient counseling, shared decision making, and improved surgical planning. The purpose of this study was to develop a model based on baseline demographic, radiographic, and surgical factors that can predict if patients will sustain an intraoperative or perioperative major complication.

METHODS

This study was a retrospective analysis of a prospective, multicenter ASD database. The inclusion criteria were age ≥ 18 years and the presence of ASD. In total, 45 variables were used in the initial training of the model including demographic data, comorbidities, modifiable surgical variables, baseline health-related quality of life, and coronal and sagittal radiographic parameters. Patients were grouped as either having at least 1 major intraoperative or perioperative complication (COMP group) or not (NOCOMP group). An ensemble of decision trees was constructed utilizing the C5.0 algorithm with 5 different bootstrapped models. Internal validation was accomplished via a 70/30 data split for training and testing each model, respectively. Overall accuracy, the area under the receiver operating characteristic (AUROC) curve, and predictor importance were calculated.

RESULTS

Five hundred fifty-seven patients were included: 409 (73.4%) in the NOCOMP group, and 148 (26.6%) in the COMP group. The overall model accuracy was 87.6% correct with an AUROC curve of 0.89 indicating a very good model fit. Twenty variables were determined to be the top predictors (importance ≥ 0.90 as determined by the model) and included (in decreasing importance): age, leg pain, Oswestry Disability Index, number of decompression levels, number of interbody fusion levels, Physical Component Summary of the SF-36, Scoliosis Research Society (SRS)–Schwab coronal curve type, Charlson Comorbidity Index, SRS activity, T-1 pelvic angle, American Society of Anesthesiologists grade, presence of osteoporosis, pelvic tilt, sagittal vertical axis, primary versus revision surgery, SRS pain, SRS total, use of bone morphogenetic protein, use of iliac crest graft, and pelvic incidence–lumbar lordosis mismatch.

CONCLUSIONS

A successful model (87% accuracy, 0.89 AUROC curve) was built predicting major intraoperative or perioperative complications following ASD surgery. This model can provide the foundation toward improved education and point-of-care decision making for patients undergoing ASD surgery.

Full access

Alexander A. Theologis, Gregory M. Mundis Jr., Stacie Nguyen, David O. Okonkwo, Praveen V. Mummaneni, Justin S. Smith, Christopher I. Shaffrey, Richard Fessler, Shay Bess, Frank Schwab, Bassel G. Diebo, Douglas Burton, Robert Hart, Vedat Deviren and Christopher Ames

OBJECTIVE

The aim of this study was to evaluate the utility of supplementing long thoracolumbar posterior instrumented fusion (posterior spinal fusion, PSF) with lateral interbody fusion (LIF) of the lumbar/thoracolumbar coronal curve apex in adult spinal deformity (ASD).

METHODS

Two multicenter databases were evaluated. Adults who had undergone multilevel LIF of the coronal curve apex in addition to PSF with L5–S1 interbody fusion (LS+Apex group) were matched by number of posterior levels fused with patients who had undergone PSF with L5–S1 interbody fusion without LIF (LS-Only group). All patients had at least 2 years of follow-up. Percutaneous PSF and 3-column osteotomy (3CO) were excluded. Demographics, perioperative details, radiographic spinal deformity measurements, and HRQoL data were analyzed.

RESULTS

Thirty-two patients were matched (LS+Apex: 16; LS: 16) (6 men, 26 women; mean age 63 ± 10 years). Overall, the average values for measures of deformity were as follows: Cobb angle > 40°, sagittal vertical axis (SVA) > 6 cm, pelvic tilt (PT) > 25°, and mismatch between pelvic incidence (PI) and lumbar lordosis (LL) > 15°. There were no significant intergroup differences in preoperative radiographic parameters, although patients in the LS+Apex group had greater Cobb angles and less LL. Patients in the LS+Apex group had significantly more anterior levels fused (4.6 vs 1), longer operative times (859 vs 379 minutes), and longer length of stay (12 vs 7.5 days) (all p < 0.01). For patients in the LS+Apex group, Cobb angle, pelvic tilt (PT), lumbar lordosis (LL), PI-LL (lumbopelvic mismatch), Oswestry Disability Index (ODI) scores, and visual analog scale (VAS) scores for back and leg pain improved significantly (p < 0.05). For patients in the LS-Only group, there were significant improvements in Cobb angle, ODI score, and VAS scores for back and leg pain. The LS+Apex group had better correction of Cobb angles (56% vs 33%, p = 0.02), SVA (43% vs 5%, p = 0.46), LL (62% vs 13%, p = 0.35), and PI-LL (68% vs 33%, p = 0.32). Despite more LS+Apex patients having major complications (56% vs 13%; p = 0.02) and postoperative leg weakness (31% vs 6%, p = 0.07), there were no intergroup differences in 2-year outcomes.

CONCLUSIONS

Long open posterior instrumented fusion with or without multilevel LIF is used to treat a variety of coronal and sagittal adult thoracolumbar deformities. The addition of multilevel LIF to open PSF with L5–S1 interbody support in this small cohort was often used in more severe coronal and/or lumbopelvic sagittal deformities and offered better correction of major Cobb angles, lumbopelvic parameters, and SVA than posterior-only operations. As these advantages came at the expense of more major complications, more leg weakness, greater blood loss, and longer operative times and hospital stays without an improvement in 2-year outcomes, future investigations should aim to more clearly define deformities that warrant the addition of multilevel LIF to open PSF and L5–S1 interbody fusion.

Full access

Shay Bess, Jeffrey E. Harris, Alexander W. L. Turner, Virginie LaFage, Justin S. Smith, Christopher I. Shaffrey, Frank J. Schwab and Regis W. Haid Jr.

OBJECTIVE

Proximal junctional kyphosis (PJK) remains problematic following multilevel instrumented spine surgery. Previous biomechanical studies indicate that providing less rigid fixation at the cranial aspect of a long posterior instrumented construct, via transition rods or hooks at the upper instrumented vertebra (UIV), may provide a gradual transition to normal motion and prevent PJK. The purpose of this study was to evaluate the ability of posterior anchored polyethylene tethers to distribute proximal motion segment stiffness in long instrumented spine constructs.

METHODS

A finite element model of a T7–L5 spine segment was created to evaluate range of motion (ROM), intradiscal pressure, pedicle screw loads, and forces in the posterior ligament complex within and adjacent to the proximal terminus of an instrumented spine construct. Six models were tested: 1) intact spine; 2) bilateral, segmental pedicle screws (PS) at all levels from T-11 through L-5; 3) bilateral pedicle screws from T-12 to L-5 and transverse process hooks (TPH) at T-11 (the UIV); 4) pedicle screws from T-11 to L5 and 1-level tethers from T-10 to T-11 (TE-UIV+1); 5) pedicle screws from T-11 to L-5 and 2-level tethers from T-9 to T-11 (TE-UIV+2); and 6) pedicle screws and 3-level tethers from T-8 to T-11 (TE-UIV+3).

RESULTS

Proximal-segment range of motion (ROM) for the PS construct increased from 16% at UIV−1 to 91% at UIV. Proximal-segment ROM for the TPH construct increased from 27% at UIV−1 to 92% at UIV. Posterior tether constructs distributed ROM at the UIV and cranial adjacent segments most effectively; ROM for TE-UIV+1 was 14% of the intact model at UIV−1, 76% at UIV, and 98% at UIV+1. ROM for TE-UIV+2 was 10% at UIV−1, 51% at UIV, 69% at UIV+1, and 97% at UIV+2. ROM for TE-UIV+3 was 7% at UIV−1, 33% at UIV, 45% at UIV+1, and 64% at UIV+2. Proximal segment intradiscal pressures, pedicle screw loads, and ligament forces in the posterior ligament complex were progressively reduced with increasing number of posterior tethers used.

CONCLUSIONS

Finite element analysis of long instrumented spine constructs demonstrated that posterior tethers created a more gradual transition in ROM and adjacent-segment stress from the instrumented to the noninstrumented spine compared with all PS and TPH constructs. Posterior tethers may limit the biomechanical risk factor for PJK; however, further clinical research is needed to evaluate clinical efficacy.

Full access

Joshua Bakhsheshian, Justin K. Scheer, Jeffrey L. Gum, Richard Hostin, Virginie Lafage, Shay Bess, Themistocles S. Protopsaltis, Douglas C. Burton, Malla Kate Keefe, Robert A. Hart, Gregory M. Mundis Jr., Christopher I. Shaffrey, Frank Schwab, Justin S. Smith, Christopher P. Ames and The International Spine Study Group

OBJECTIVE

Mental disease burden can have a significant impact on levels of disability and health-related quality of life (HRQOL) measures. Therefore, the authors investigated the significance of mental health status in adults with spinal deformity and poor physical function.

METHODS

A retrospective analysis of a prospective multicenter database of 365 adult spinal deformity (ASD) patients who had undergone surgical treatment was performed. Health-related QOL variables were examined preoperatively and at the 2-year postoperative follow-up. Patients were grouped by their 36-Item Short Form Health Survey mental component summary (MCS) and physical component summary (PCS) scores. Both groups had PCS scores ≤ 25th percentile for matched norms; however, the low mental health (LMH) group consisted of patients with an MCS score ≤ 25th percentile, and the high mental health (HMH) group included patients with an MCS score ≥ 75th percentile.

RESULTS

Of the 264 patients (72.3%) with a 2-year follow-up, 104 (28.5%) met the inclusion criteria for LMH and 40 patients (11.0%) met those for HMH. The LMH group had a significantly higher overall rate of comorbidities, specifically leg weakness, depression, hypertension, and self-reported neurological and psychiatric disease processes, and were more likely to be unemployed as compared with the HMH group (p < 0.05 for all). The 2 groups had similar 2-year postoperative improvements in HRQOL (p > 0.05) except for the greater improvements in the MCS and the Scoliosis Research Society-22r questionnaire (SRS-22r) mental domain (p < 0.05) in the LMH group and greater improvements in PCS and SRS-22r satisfaction and back pain domains (p < 0.05) in the HMH group. The LMH group had a higher rate of reaching a minimal clinically important difference (MCID) on the SRS-22r mental domain (p < 0.01), and the HMH group had a higher rate of reaching an MCID on the PCS and SRS-22r activity domain (p < 0.05). On multivariable logistic regression, having LMH was a significant independent predictor of failure to reach an MCID on the PCS (p < 0.05). At the 2-year postoperative follow-up, 14 LMH patients (15.1%) were categorized as HMH. Two LMH patients (2.2%), and 3 HMH patients (7.7%) transitioned to a PCS score ≥ 75th percentile for age- and sex-matched US norms (p < 0.01).

CONCLUSIONS

While patients with poor mental and physical health, according to their MCS and PCS scores, have higher medical comorbidity and unemployment rates, they still demonstrate significant improvements in HRQOL measurements postoperatively. Both LMH and HMH patient groups demonstrated similar improvements in most HRQOL domains, except that the LMH patients had difficulties in obtaining improvements in the PCS domain.

Full access

Alexander A. Theologis, Tamir Ailon, Justin K. Scheer, Justin S. Smith, Christopher I. Shaffrey, Shay Bess, Munish Gupta, Eric O. Klineberg, Khaled Kebaish, Frank Schwab, Virginie Lafage, Douglas Burton, Robert Hart, Christopher P. Ames and The International Spine Study Group

OBJECTIVE

The objective of this study was to isolate whether the effect of a baseline clinical history of depression on outcome is independent of associated physical disability and to evaluate which mental health screening tool has the most utility in determining 2-year clinical outcomes after adult spinal deformity (ASD) surgery.

METHODS

Consecutively enrolled patients with ASD in a prospective, multicenter ASD database who underwent surgical intervention with a minimum 2-year follow-up were retrospectively reviewed. A subset of patients who completed the Distress and Risk Assessment Method (DRAM) was also analyzed. The effects of categorical baseline depression and DRAM classification on the Oswestry Disability Index (ODI), SF-36, and Scoliosis Research Society questionnaire (SRS-22r) were assessed using univariate and multivariate linear regression analyses. The probability of achieving ≥ 1 minimal clinically important difference (MCID) on the ODI based on the DRAM’s Modified Somatic Perceptions Questionnaire (MSPQ) score was estimated.

RESULTS

Of 267 patients, 66 (24.7%) had self-reported preoperative depression. Patients with baseline depression had significantly more preoperative back pain, greater BMI and Charlson Comorbidity Indices, higher ODIs, and lower SRS-22r and SF-36 Physical/Mental Component Summary (PCS/MCS) scores compared with those without self-reported baseline depression. They also had more severe regional and global sagittal malalignment. After adjusting for these differences, preoperative depression did not impact 2-year ODI, PCS/MCS, or SRS-22r totals (p > 0.05). Compared with those in the “normal” DRAM category, “distressed somatics” (n = 11) had higher ODI (+23.5 points), lower PCS (−10.9), SRS-22r activity (−0.9), and SRS-22r total (−0.8) scores (p ≤ 0.01), while “distressed depressives” (n = 25) had lower PCS (−8.4) and SRS-22r total (−0.5) scores (p < 0.05). After adjusting for important covariates, each additional point on the baseline MSPQ was associated with a 0.8-point increase in 2-year ODI (p = 0.03). The probability of improving by at least 1 MCID in 2-year ODI ranged from 77% to 21% for MSPQ scores 0–20, respectively.

CONCLUSIONS

A baseline clinical history of depression does not correlate with worse 2-year outcomes after ASD surgery after adjusting for baseline differences in comorbidities, health-related quality of life, and spinal deformity severity. Conversely, DRAM improved risk stratification of patient subgroups predisposed to achieving suboptimal surgical outcomes. The DRAM’s MSPQ was more predictive than MCS and SRS mental domain for 2-year outcomes and may be a valuable tool for surgical screening.