Browse

You are looking at 1 - 10 of 26 items for

  • By Author: Bess, Shay x
  • By Author: Hostin, Richard x
Clear All
Restricted access

Renaud Lafage, Ibrahim Obeid, Barthelemy Liabaud, Shay Bess, Douglas Burton, Justin S. Smith, Cyrus Jalai, Richard Hostin, Christopher I. Shaffrey, Christopher Ames, Han Jo Kim, Eric Klineberg, Frank Schwab, Virginie Lafage and the International Spine Study Group

OBJECTIVE

The surgical correction of adult spinal deformity (ASD) often involves modifying lumbar lordosis (LL) to restore ideal sagittal alignment. However, corrections that include large changes in LL increase the risk for development of proximal junctional kyphosis (PJK). Little is known about the impact of cranial versus caudal correction in the lumbar spine on the occurrence of PJK. The goal of this study was to investigate the impact of the location of the correction on acute PJK development.

METHODS

This study was a retrospective review of a prospective multicenter database. Surgically treated ASD patients with early follow-up evaluations (6 weeks) and fusions of the full lumbosacral spine were included. Radiographic parameters analyzed included the classic spinopelvic parameters (pelvic incidence [PI], pelvic tilt [PT], PI−LL, and sagittal vertical axis [SVA]) and segmental correction. Using Glattes’ criteria, patients were stratified into PJK and noPJK groups and propensity matched by age and regional lumbar correction (ΔPI−LL). Radiographic parameters and segmental correction were compared between PJK and noPJK patients using independent t-tests.

RESULTS

After propensity matching, 312 of 483 patients were included in the analysis (mean age 64 years, 76% women, 40% with PJK). There were no significant differences between PJK and noPJK patients at baseline or postoperatively, or between changes in alignment, with the exception of thoracic kyphosis (TK) and ΔTK. PJK patients had a decrease in segmental lordosis at L4-L5-S1 (−0.6° vs 1.6°, p = 0.025), and larger increases in segmental correction at cranial levels L1-L2-L3 (9.9° vs 7.1°), T12-L1-L2 (7.3° vs 5.4°), and T11-T12-L1 (2.9° vs 0.7°) (all p < 0.05).

CONCLUSIONS

Although achievement of an optimal sagittal alignment is the goal of realignment surgery, dramatic lumbar corrections appear to increase the risk of PJK. This study was the first to demonstrate that patients who developed PJK underwent kyphotic changes in the L4–S1 segments while restoring LL at more cranial levels (T12–L3). These findings suggest that restoring lordosis at lower lumbar levels may result in a decreased risk of developing PJK.

Restricted access

Blake N. Staub, Renaud Lafage, Han Jo Kim, Christopher I. Shaffrey, Gregory M. Mundis Jr., Richard Hostin, Douglas Burton, Lawrence Lenke, Munish C. Gupta, Christopher Ames, Eric Klineberg, Shay Bess, Frank Schwab, Virginie Lafage and the International Spine Study Group

OBJECTIVE

Numerous studies have attempted to delineate the normative value for T1S−CL (T1 slope minus cervical lordosis) as a marker for both cervical deformity and a goal for correction similar to how PI-LL (pelvic incidence–lumbar lordosis) mismatch informs decision making in thoracolumbar adult spinal deformity (ASD). The goal of this study was to define the relationship between T1 slope (T1S) and cervical lordosis (CL).

METHODS

This is a retrospective review of a prospective database. Surgical ASD cases were initially analyzed. Analysis across the sagittal parameters was performed. Linear regression analysis based on T1S was used to provide a clinically applicable equation to predict CL. Findings were validated using the postoperative alignment of the ASD patients. Further validation was then performed using a second, normative database. The range of normal alignment associated with horizontal gaze was derived from a multilinear regression on data from asymptomatic patients.

RESULTS

A total of 103 patients (mean age 54.7 years) were included. Analysis revealed a strong correlation between T1S and C0–7 lordosis (r = 0.886), C2–7 lordosis (r = 0.815), and C0–2 lordosis (r = 0.732). There was no significant correlation between T1S and T1S−CL. Linear regression analysis revealed that T1S−CL assumed a constant value of 16.5° (R2 = 0.664, standard error 2°). These findings were validated on the postoperative imaging (mean absolute error [MAE] 5.9°). The equation was then applied to the normative database (MAE 6.7° controlling for McGregor slope [MGS] between −5° and 15°). A multilinear regression between C2–7, T1S, and MGS demonstrated a range of T1S−CL between 14.5° and 26.5° was necessary to maintain horizontal gaze.

CONCLUSIONS

Normative CL can be predicted via the formula CL = T1S − 16.5° ± 2°. This implies a threshold of deformity and aids in providing a goal for surgical correction. Just as pelvic incidence (PI) can be used to determine the ideal LL, T1S can be used to predict ideal CL. This formula also implies that a kyphotic cervical alignment is to be expected for individuals with a T1S < 16.5°.

Free access

David B. Bumpass, Lawrence G. Lenke, Jeffrey L. Gum, Christopher I. Shaffrey, Justin S. Smith, Christopher P. Ames, Shay Bess, Brian J. Neuman, Eric Klineberg, Gregory M. Mundis Jr., Frank Schwab, Virginie Lafage, Han Jo Kim, Douglas C. Burton, Khaled M. Kebaish, Richard Hostin, Renaud Lafage, Michael P. Kelly and for the International Spine Study Group

OBJECTIVE

Adolescent spine deformity studies have shown that male patients require longer surgery and have greater estimated blood loss (EBL) and complications compared with female patients. No studies exist to support this relationship in adult spinal deformity (ASD). The purpose of this study was to investigate associations between sex and complications, deformity correction, and health-related quality of life (HRQOL) in patients with ASD. It was hypothesized that male ASD patients would have greater EBL, longer surgery, and more complications than female ASD patients.

METHODS

A multicenter ASD cohort was retrospectively queried for patients who underwent primary posterior-only instrumented fusions with a minimum of 5 levels fused. The minimum follow-up was 2 years. Primary outcomes were EBL, operative time, intra-, peri-, and postoperative complications, radiographic correction, and HRQOL outcomes (Oswestry Disability Index, SF-36, and Scoliosis Research Society-22r Questionnaire). Poisson multivariate regression was used to control for age, comorbidities, and levels fused.

RESULTS

Ninety male and 319 female patients met the inclusion criteria. Male patients had significantly greater mean EBL (2373 ml vs 1829 ml, p = 0.01). The mean operative time, transfusion requirements, and final radiographic measurements did not differ between sexes. Similarly, changes in HRQOL showed no significant differences. Finally, there were no sex differences in the incidence of complications (total, major, or minor) at any time point after controlling for age, body mass index, comorbidities, and levels fused.

CONCLUSIONS

Despite higher EBL, male ASD patients did not experience more complications or require less deformity correction at the 2-year follow-up. HRQOL scores similarly showed no sex differences. These findings differ from adolescent deformity studies, and surgeons can counsel patients that sex is unlikely to influence the outcomes and complication rates of primary all-posterior ASD surgery.

Free access

Taemin Oh, Justin K. Scheer, Justin S. Smith, Richard Hostin, Chessie Robinson, Jeffrey L. Gum, Frank Schwab, Robert A. Hart, Virginie Lafage, Douglas C. Burton, Shay Bess, Themistocles Protopsaltis, Eric O. Klineberg, Christopher I. Shaffrey, Christopher P. Ames and the International Spine Study Group

OBJECTIVE

Patients with adult spinal deformity (ASD) experience significant quality of life improvements after surgery. Treatment, however, is expensive and complication rates are high. Predictive analytics has the potential to use many variables to make accurate predictions in large data sets. A validated minimum clinically important difference (MCID) model has the potential to assist in patient selection, thereby improving outcomes and, potentially, cost-effectiveness.

METHODS

The present study was a retrospective analysis of a multiinstitutional database of patients with ASD. Inclusion criteria were as follows: age ≥ 18 years, radiographic evidence of ASD, 2-year follow-up, and preoperative Oswestry Disability Index (ODI) > 15. Forty-six variables were used for model training: demographic data, radiographic parameters, surgical variables, and results on the health-related quality of life questionnaire. Patients were grouped as reaching a 2-year ODI MCID (+MCID) or not (−MCID). An ensemble of 5 different bootstrapped decision trees was constructed using the C5.0 algorithm. Internal validation was performed via 70:30 data split for training/testing. Model accuracy and area under the curve (AUC) were calculated. The mean quality-adjusted life years (QALYs) and QALYs gained at 2 years were calculated and discounted at 3.5% per year. The QALYs were compared between patients in the +MCID and –MCID groups.

RESULTS

A total of 234 patients met inclusion criteria (+MCID 129, −MCID 105). Sixty-nine patients (29.5%) were included for model testing. Predicted versus actual results were 50 versus 40 for +MCID and 19 versus 29 for −MCID (i.e., 10 patients were misclassified). Model accuracy was 85.5%, with 0.96 AUC. Predicted results showed that patients in the +MCID group had significantly greater 2-year mean QALYs (p = 0.0057) and QALYs gained (p = 0.0002).

CONCLUSIONS

A successful model with 85.5% accuracy and 0.96 AUC was constructed to predict which patients would reach ODI MCID. The patients in the +MCID group had significantly higher mean 2-year QALYs and QALYs gained. This study provides proof of concept for using predictive modeling techniques to optimize patient selection in complex spine surgery.

Full access

Justin S. Smith, Christopher I. Shaffrey, Eric Klineberg, Virginie Lafage, Frank Schwab, Renaud Lafage, Han Jo Kim, Richard Hostin, Gregory M. Mundis Jr., Munish Gupta, Barthelemy Liabaud, Justin K. Scheer, Bassel G. Diebo, Themistocles S. Protopsaltis, Michael P. Kelly, Vedat Deviren, Robert Hart, Doug Burton, Shay Bess and Christopher P. Ames

OBJECTIVE

Although 3-column osteotomy (3CO) can provide powerful alignment correction in adult spinal deformity (ASD), these procedures are complex and associated with high complication rates. The authors' objective was to assess complications associated with ASD surgery that included 3CO based on a prospectively collected multicenter database.

METHODS

This study is a retrospective review of a prospectively collected multicenter consecutive case registry. ASD patients treated with 3CO and eligible for 2-year follow-up were identified from a prospectively collected multicenter ASD database. Early (≤ 6 weeks after surgery) and delayed (> 6 weeks after surgery) complications were collected using standardized forms and on-site coordinators.

RESULTS

Of 106 ASD patients treated with 3CO, 82 (77%; 68 treated with pedicle subtraction osteotomy [PSO] and 14 treated with vertebral column resection [VCR]) had 2-year follow-up (76% women, mean age 60.7 years, previous spine fusion in 80%). The mean number of posterior fusion levels was 12.9, and 17% also had an anterior fusion. A total of 76 early (44 minor, 32 major) and 66 delayed (13 minor, 53 major) complications were reported, with 41 patients (50.0%) and 45 patients (54.9%) affected, respectively. Overall, 64 patients (78.0%) had at least 1 complication, and 50 (61.0%) had at least 1 major complication. The most common complications were rod breakage (31.7%), dural tear (20.7%), radiculopathy (9.8%), motor deficit (9.8%), proximal junctional kyphosis (PJK, 9.8%), pleural effusion (8.5%), and deep wound infection (7.3%). Compared with patients who did not experience early or delayed complications, those who had these complications did not differ significantly with regard to age, sex, body mass index, Charlson Comorbidity Index, American Society of Anesthesiologists score, smoking status, history of previous spine surgery or spine fusion, or whether the 3CO performed was a PSO or VCR (p ≥ 0.06). Twenty-seven (33%) patients had 1–11 reoperations (total of 44 reoperations). The most common indications for reoperation were rod breakage (n = 14), deep wound infection (n = 15), and PJK (n = 6). The 24 patients who did not achieve 2-year follow-up had a mean of 0.85 years of follow-up, and the types of early and delayed complications encountered in these 24 patients were comparable to those encountered in the patients that achieved 2-year follow-up.

CONCLUSIONS

Among 82 ASD patients treated with 3CO, 64 (78.0%) had at least 1 early or delayed complication (57 minor, 85 major). The most common complications were instrumentation failure, dural tear, new neurological deficit, PJK, pleural effusion, and deep wound infection. None of the assessed demographic or surgical parameters were significantly associated with the occurrence of complications. These data may prove useful for surgical planning, patient counseling, and efforts to improve the safety and cost-effectiveness of these procedures.

Full access

Joshua Bakhsheshian, Justin K. Scheer, Jeffrey L. Gum, Richard Hostin, Virginie Lafage, Shay Bess, Themistocles S. Protopsaltis, Douglas C. Burton, Malla Kate Keefe, Robert A. Hart, Gregory M. Mundis Jr., Christopher I. Shaffrey, Frank Schwab, Justin S. Smith, Christopher P. Ames and The International Spine Study Group

OBJECTIVE

Mental disease burden can have a significant impact on levels of disability and health-related quality of life (HRQOL) measures. Therefore, the authors investigated the significance of mental health status in adults with spinal deformity and poor physical function.

METHODS

A retrospective analysis of a prospective multicenter database of 365 adult spinal deformity (ASD) patients who had undergone surgical treatment was performed. Health-related QOL variables were examined preoperatively and at the 2-year postoperative follow-up. Patients were grouped by their 36-Item Short Form Health Survey mental component summary (MCS) and physical component summary (PCS) scores. Both groups had PCS scores ≤ 25th percentile for matched norms; however, the low mental health (LMH) group consisted of patients with an MCS score ≤ 25th percentile, and the high mental health (HMH) group included patients with an MCS score ≥ 75th percentile.

RESULTS

Of the 264 patients (72.3%) with a 2-year follow-up, 104 (28.5%) met the inclusion criteria for LMH and 40 patients (11.0%) met those for HMH. The LMH group had a significantly higher overall rate of comorbidities, specifically leg weakness, depression, hypertension, and self-reported neurological and psychiatric disease processes, and were more likely to be unemployed as compared with the HMH group (p < 0.05 for all). The 2 groups had similar 2-year postoperative improvements in HRQOL (p > 0.05) except for the greater improvements in the MCS and the Scoliosis Research Society-22r questionnaire (SRS-22r) mental domain (p < 0.05) in the LMH group and greater improvements in PCS and SRS-22r satisfaction and back pain domains (p < 0.05) in the HMH group. The LMH group had a higher rate of reaching a minimal clinically important difference (MCID) on the SRS-22r mental domain (p < 0.01), and the HMH group had a higher rate of reaching an MCID on the PCS and SRS-22r activity domain (p < 0.05). On multivariable logistic regression, having LMH was a significant independent predictor of failure to reach an MCID on the PCS (p < 0.05). At the 2-year postoperative follow-up, 14 LMH patients (15.1%) were categorized as HMH. Two LMH patients (2.2%), and 3 HMH patients (7.7%) transitioned to a PCS score ≥ 75th percentile for age- and sex-matched US norms (p < 0.01).

CONCLUSIONS

While patients with poor mental and physical health, according to their MCS and PCS scores, have higher medical comorbidity and unemployment rates, they still demonstrate significant improvements in HRQOL measurements postoperatively. Both LMH and HMH patient groups demonstrated similar improvements in most HRQOL domains, except that the LMH patients had difficulties in obtaining improvements in the PCS domain.

Full access

Justin S. Smith, Eric Klineberg, Virginie Lafage, Christopher I. Shaffrey, Frank Schwab, Renaud Lafage, Richard Hostin, Gregory M. Mundis Jr., Thomas J. Errico, Han Jo Kim, Themistocles S. Protopsaltis, D. Kojo Hamilton, Justin K. Scheer, Alex Soroceanu, Michael P. Kelly, Breton Line, Munish Gupta, Vedat Deviren, Robert Hart, Douglas C. Burton, Shay Bess, Christopher P. Ames and the International Spine Study Group

OBJECTIVE

Although multiple reports have documented significant benefit from surgical treatment of adult spinal deformity (ASD), these procedures can have high complication rates. Previously reported complications rates associated with ASD surgery are limited by retrospective design, single-surgeon or single-center cohorts, lack of rigorous data on complications, and/or limited follow-up. Accurate definition of complications associated with ASD surgery is important and may serve as a resource for patient counseling and efforts to improve the safety of patient care. The authors conducted a study to prospectively assess the rates of complications associated with ASD surgery with a minimum 2-year follow-up based on a multicenter study design that incorporated standardized data-collection forms, on-site study coordinators, and regular auditing of data to help ensure complete and accurate reporting of complications. In addition, they report age stratification of complication rates and provide a general assessment of factors that may be associated with the occurrence of complications.

METHODS

As part of a prospective, multicenter ASD database, standardized forms were used to collect data on surgery-related complications. On-site coordinators and central auditing helped ensure complete capture of complication data. Inclusion criteria were age older than 18 years, ASD, and plan for operative treatment. Complications were classified as perioperative (within 6 weeks of surgery) or delayed (between 6 weeks after surgery and time of last follow-up), and as minor or major. The primary focus for analyses was on patients who reached a minimum follow-up of 2 years.

RESULTS

Of 346 patients who met the inclusion criteria, 291 (84%) had a minimum 2-year follow-up (mean 2.1 years); their mean age was 56.2 years. The vast majority (99%) had treatment including a posterior procedure, 25% had an anterior procedure, and 19% had a 3-column osteotomy. At least 1 revision was required in 82 patients (28.2%). A total of 270 perioperative complications (145 minor; 125 major) were reported, with 152 patients (52.2%) affected, and a total of 199 delayed complications (62 minor; 137 major) were reported, with 124 patients (42.6%) affected. Overall, 469 complications (207 minor; 262 major) were documented, with 203 patients (69.8%) affected. The most common complication categories included implant related, radiographic, neurological, operative, cardiopulmonary, and infection. Higher complication rates were associated with older age (p = 0.009), greater body mass index (p ≤ 0.031), increased comorbidities (p ≤ 0.007), previous spine fusion (p = 0.029), and 3-column osteotomies (p = 0.036). Cases in which 2-year follow-up was not achieved included 2 perioperative mortalities (pulmonary embolus and inferior vena cava injury).

CONCLUSIONS

This study provides an assessment of complications associated with ASD surgery based on a prospective, multicenter design and with a minimum 2-year follow-up. Although the overall complication rates were high, in interpreting these findings, it is important to recognize that not all complications are equally impactful. This study represents one of the most complete and detailed reports of perioperative and delayed complications associated with ASD surgery to date. These findings may prove useful for treatment planning, patient counseling, benchmarking of complication rates, and efforts to improve the safety and cost-effectiveness of patient care.

Free access

Christopher P. Ames, Justin S. Smith, Robert Eastlack, Donald J. Blaskiewicz, Christopher I. Shaffrey, Frank Schwab, Shay Bess, Han Jo Kim, Gregory M. Mundis Jr., Eric Klineberg, Munish Gupta, Michael O’Brien, Richard Hostin, Justin K. Scheer, Themistocles S. Protopsaltis, Kai-Ming G. Fu, Robert Hart, Todd J. Albert, K. Daniel Riew, Michael G. Fehlings, Vedat Deviren, Virginie Lafage and International Spine Study Group

OBJECT

Despite the complexity of cervical spine deformity (CSD) and its significant impact on patient quality of life, there exists no comprehensive classification system. The objective of this study was to develop a novel classification system based on a modified Delphi approach and to characterize the intra- and interobserver reliability of this classification.

METHODS

Based on an extensive literature review and a modified Delphi approach with an expert panel, a CSD classification system was generated. The classification system included a deformity descriptor and 5 modifiers that incorporated sagittal, regional, and global spinopelvic alignment and neurological status. The descriptors included: “C,” “CT,” and “T” for primary cervical kyphotic deformities with an apex in the cervical spine, cervicothoracic junction, or thoracic spine, respectively; “S” for primary coronal deformity with a coronal Cobb angle ≥ 15°; and “CVJ” for primary craniovertebral junction deformity. The modifiers included C2–7 sagittal vertical axis (SVA), horizontal gaze (chin-brow to vertical angle [CBVA]), T1 slope (TS) minus C2–7 lordosis (TS–CL), myelopathy (modified Japanese Orthopaedic Association [mJOA] scale score), and the Scoliosis Research Society (SRS)-Schwab classification for thoracolumbar deformity. Application of the classification system requires the following: 1) full-length standing posteroanterior (PA) and lateral spine radiographs that include the cervical spine and femoral heads; 2) standing PA and lateral cervical spine radiographs; 3) completed and scored mJOA questionnaire; and 4) a clinical photograph or radiograph that includes the skull for measurement of the CBVA. A series of 10 CSD cases, broadly representative of the classification system, were selected and sufficient radiographic and clinical history to enable classification were assembled. A panel of spinal deformity surgeons was queried to classify each case twice, with a minimum of 1 intervening week. Inter- and intrarater reliability measures were based on calculations of Fleiss k coefficient values.

RESULTS

Twenty spinal deformity surgeons participated in this study. Interrater reliability (Fleiss k coefficients) for the deformity descriptor rounds 1 and 2 were 0.489 and 0.280, respectively, and mean intrarater reliability was 0.584. For the modifiers, including the SRS-Schwab components, the interrater (round 1/round 2) and intrarater reliabilities (Fleiss k coefficients) were: C2–7 SVA (0.338/0.412, 0.584), horizontal gaze (0.779/0.430, 0.768), TS-CL (0.721/0.567, 0.720), myelopathy (0.602/0.477, 0.746), SRS-Schwab curve type (0.590/0.433, 0.564), pelvic incidence-lumbar lordosis (0.554/0.386, 0.826), pelvic tilt (0.714/0.627, 0.633), and C7-S1 SVA (0.071/0.064, 0.233), respectively. The parameter with the poorest reliability was the C7–S1 SVA, which may have resulted from differences in interpretation of positive and negative measurements.

CONCLUSIONS

The proposed classification provides a mechanism to assess CSD within the framework of global spinopelvic malalignment and clinically relevant parameters. The intra- and interobserver reliabilities suggest moderate agreement and serve as the basis for subsequent improvement and study of the proposed classification.

Full access

Alex Soroceanu, Douglas C. Burton, Bassel Georges Diebo, Justin S. Smith, Richard Hostin, Christopher I. Shaffrey, Oheneba Boachie-Adjei, Gregory M. Mundis Jr., Christopher Ames, Thomas J. Errico, Shay Bess, Munish C. Gupta, Robert A. Hart, Frank J. Schwab, Virginie Lafage and International Spine Study Group

OBJECT

Adult spinal deformity (ASD) surgery is known for its high complication rate. This study examined the impact of obesity on complication rates, infection, and patient-reported outcomes in patients undergoing surgery for ASD.

METHODS

This study was a retrospective review of a multicenter prospective database of patients with ASD who were treated surgically. Patients with available 2-year follow-up data were included. Obesity was defined as having a body mass index (BMI) ≥ 30 kg/m2. Data collected included complications (total, minor, major, implant-related, radiographic, infection, revision surgery, and neurological injury), estimated blood loss (EBL), operating room (OR) time, length of stay (LOS), and patient-reported questionnaires (Oswestry Disability Index [ODI], Short Form-36 [SF-36], and Scoliosis Research Society [SRS]) at baseline and at 6 weeks, 1 year, and 2 years postoperatively. The impact of obesity was studied using multivariate modeling, accounting for confounders.

RESULTS

Of 241 patients who satisfied inclusion criteria, 175 patients were nonobese and 66 were obese. Regression models showed that obese patients had a higher overall incidence of major complications (IRR 1.54, p = 0.02) and wound infections (odds ratio 4.88, p = 0.02). Obesity did not increase the number of minor complications (p = 0.62), radiographic complications (p = 0.62), neurological complications (p = 0.861), or need for revision surgery (p = 0.846). Obesity was not significantly correlated with OR time (p = 0.23), LOS (p = 0.9), or EBL (p = 0.98). Both groups experienced significant improvement overtime, as measured on the ODI (p = 0.0001), SF-36 (p = 0.0001), and SRS (p = 0.0001) questionnaires. However, the overall magnitude of improvement was less for obese patients (ODI, p = 0.0035; SF-36, p = 0.0012; SRS, p = 0.022). Obese patients also had a lower rate of improvement over time (SRS, p = 0.0085; ODI, p = 0.0001; SF-36, p = 0.0001).

CONCLUSIONS

This study revealed that obese patients have an increased risk of complications following ASD correction. Despite these increased complications, obese patients do benefit from surgical intervention; however, their improvement in health-related quality of life (HRQL) is less than that of nonobese patients.