Browse

You are looking at 1 - 5 of 5 items for

  • By Author: Berger, Mitchel S. x
  • By Author: Nagarajan, Srikantan S. x
Clear All
Restricted access

Anthony T. Lee, Claire Faltermeier, Ramin A. Morshed, Jacob S. Young, Sofia Kakaizada, Claudia Valdivia, Anne M. Findlay, Phiroz E. Tarapore, Srikantan S. Nagarajan, Shawn L. Hervey-Jumper and Mitchel S. Berger

OBJECTIVE

Gliomas are intrinsic brain tumors with the hallmark of diffuse white matter infiltration, resulting in short- and long-range network dysfunction. Preoperative magnetoencephalography (MEG) can assist in maximizing the extent of resection while minimizing morbidity. While MEG has been validated in motor mapping, its role in speech mapping remains less well studied. The authors assessed how the resection of intraoperative electrical stimulation (IES)–negative, high functional connectivity (HFC) network sites, as identified by MEG, impacts language performance.

METHODS

Resting-state, whole-brain MEG recordings were obtained from 26 patients who underwent perioperative language evaluation and glioma resection that was guided by awake language and IES mapping. The functional connectivity of an individual voxel was determined by the imaginary coherence between the index voxel and the rest of the brain, referenced to its contralesional pair. The percentage of resected HFC voxels was correlated with postoperative language outcomes in tasks of increasing complexity: text reading, 4-syllable repetition, picture naming, syntax (SYN), and auditory stimulus naming (AN).

RESULTS

Overall, 70% of patients (14/20) in whom any HFC tissue was resected developed an early postoperative language deficit (mean 2.3 days, range 1–8 days), compared to 33% of patients (2/6) in whom no HFC tissue was resected (p = 0.16). When bifurcated by the amount of HFC tissue that was resected, 100% of patients (3/3) with an HFC resection > 25% displayed deficits in AN, compared to 30% of patients (6/20) with an HFC resection < 25% (p = 0.04). Furthermore, there was a linear correlation between the severity of AN and SYN decline with percentage of HFC sites resected (p = 0.02 and p = 0.04, respectively). By 2.2 months postoperatively (range 1–6 months), the correlation between HFC resection and both AN and SYN decline had resolved (p = 0.94 and p = 1.00, respectively) in all patients (9/9) except two who experienced early postoperative tumor progression or stroke involving inferior frontooccipital fasciculus.

CONCLUSIONS

Imaginary coherence measures of functional connectivity using MEG are able to identify HFC network sites within and around low- and high-grade gliomas. Removal of IES-negative HFC sites results in early transient postoperative decline in AN and SYN, which resolved by 3 months in all patients without stroke or early tumor progression. Measures of functional connectivity may therefore be a useful means of counseling patients about postoperative risk and assist with preoperative surgical planning.

Restricted access

Phiroz E. Tarapore, Matthew C. Tate, Anne M. Findlay, Susanne M. Honma, Danielle Mizuiri, Mitchel S. Berger and Srikantan S. Nagarajan

Object

Direct cortical stimulation (DCS) is the gold-standard technique for motor mapping during craniotomy. However, preoperative noninvasive motor mapping is becoming increasingly accurate. Two such noninvasive modalities are navigated transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG) imaging. While MEG imaging has already been extensively validated as an accurate modality of noninvasive motor mapping, TMS is less well studied. In this study, the authors compared the accuracy of TMS to both DCS and MEG imaging.

Methods

Patients with tumors in proximity to primary motor cortex underwent preoperative TMS and MEG imaging for motor mapping. The patients subsequently underwent motor mapping via intraoperative DCS. The loci of maximal response were recorded from each modality and compared. Motor strength was assessed at 3 months postoperatively.

Results

Transcranial magnetic stimulation and MEG imaging were performed on 24 patients. Intraoperative DCS yielded 8 positive motor sites in 5 patients. The median distance ± SEM between TMS and DCS motor sites was 2.13 ± 0.29 mm, and between TMS and MEG imaging motor sites was 4.71 ± 1.08 mm. In no patients did DCS motor mapping reveal a motor site that was unrecognized by TMS. Three of 24 patients developed new, early neurological deficit in the form of upper-extremity paresis. At the 3-month follow-up evaluation, 2 of these patients were significantly improved, experiencing difficulty only with fine motor tasks; the remaining patient had improvement to 4/5 strength. There were no deaths over the course of the study.

Conclusions

Maps of the motor system generated with TMS correlate well with those generated by both MEG imaging and DCS. Negative TMS mapping also correlates with negative DCS mapping. Navigated TMS is an accurate modality for noninvasively generating preoperative motor maps.

Restricted access

Jeffrey I. Berman, Mitchel S. Berger, Sungwon Chung, Srikantan S. Nagarajan and Roland G. Henry

Object

Resecting brain tumors involves the risk of damaging the descending motor pathway. Diffusion tensor (DT)–imaged fiber tracking is a noninvasive magnetic resonance (MR) technique that can delineate the subcortical course of the motor pathway. The goal of this study was to use intraoperative subcortical stimulation mapping of the motor tract and magnetic source imaging to validate the utility of DT-imaged fiber tracking as a tool for presurgical planning.

Methods

Diffusion tensor-imaged fiber tracks of the motor tract were generated preoperatively in nine patients with gliomas. A mask of the resultant fiber tracks was overlaid on high-resolution T1- and T2-weighted anatomical MR images and used for stereotactic surgical navigation. Magnetic source imaging was performed in seven of the patients to identify functional somatosensory cortices. During resection, subcortical stimulation mapping of the motor pathway was performed within the white matter using a bipolar electrode.

Results

A total of 16 subcortical motor stimulations were stereotactically identified in nine patients. The mean distance between the stimulation sites and the DT-imaged fiber tracks was 8.7 ±3.1 mm (±standard deviation). The measured distance between subcortical stimulation sites and DT-imaged fiber tracks combines tracking technique errors and all errors encountered with stereotactic navigation.

Conclusions

Fiber tracks delineated using DT imaging can be used to identify the motor tract in deep white matter and define a safety margin around the tract.

Restricted access

Heidi E. Kirsch, Zhao Zhu, Susanne Honma, Anne Findlay, Mitchel S. Berger and Srikantan S. Nagarajan

Object

Before resective brain surgery, localization of the functional regions is necessary to minimize postoperative deficits. The face area has been relatively difficult to map noninvasively by using functional imaging techniques. Preoperative localization of face somatosensory cortex with magnetoencephalography (MEG) may allow the surgeon to predict the location of mouth motor areas.

Methods

The authors compared the location of face somatosensory cortex obtained with somatosensory evoked fields during preoperative MEG with the mouth motor areas identified during intraoperative electrocortical stimulation (ECS) mapping in 13 patients undergoing resection of brain tumor.

Results

In this group of patients, ECS mouth motor sites were usually anterior and lateral to MEG localizations of lip somatosensory cortex. The consistent quantitative relationship between results of these two mapping procedures allows the practitioner to predict the location of mouth motor cortex based on noninvasive preoperative MEG measurements.

Conclusions

Based on this result, the authors suggest that somatosensory mapping using MEG can be used to guide intraoperative mapping and neurosurgical planning.

Restricted access

Peter T. Lin, Mitchel S. Berger and Srikantan S. Nagarajan

Object

In this study the role of magnetic source imaging for preoperative motor mapping was evaluated by using a single-dipole localization method to analyze motor field data in 41 patients.

Methods

Data from affected and unaffected hemispheres were collected in patients performing voluntary finger flexion movements. Somatosensory evoked field (SSEF) data were also obtained using tactile stimulation. Dipole localization using motor field (MF) data was successful in only 49% of patients, whereas localization with movement-evoked field (MEF) data was successful in 66% of patients. When the spatial distribution of MF and MEF dipoles in relation to SSEF dipoles was analyzed, the motor dipoles were not spatially distinct from somatosensory dipoles.

Conclusions

The findings in this study suggest that single-dipole localization for the analysis of motor data is not sufficiently sensitive and is nonspecific, and thus not clinically useful.