You are looking at 1 - 6 of 6 items for

  • By Author: Ames, Christopher x
  • By Author: Mundis, Gregory x
Clear All
Restricted access

Han Jo Kim, Sohrab Virk, Jonathan Elysee, Peter Passias, Christopher Ames, Christopher I. Shaffrey, Gregory Mundis Jr., Themistocles Protopsaltis, Munish Gupta, Eric Klineberg, Justin S. Smith, Douglas Burton, Frank Schwab, Virginie Lafage, Renaud Lafage and the International Spine Study Group


Cervical deformity (CD) is difficult to define due to the high variability in normal cervical alignment based on postural- and thoracolumbar-driven changes to cervical alignment. The purpose of this study was to identify whether patterns of sagittal deformity could be established based on neutral and dynamic alignment, as shown on radiographs.


This study is a retrospective review of a prospective, multicenter database of CD patients who underwent surgery from 2013 to 2015. Their radiographs were reviewed by 12 individuals using a consensus-based method to identify severe sagittal CD. Radiographic parameters correlating with health-related quality of life were introduced in a two-step cluster analysis (a combination of hierarchical cluster and k-means cluster) to identify patterns of sagittal deformity. A comparison of lateral and lateral extension radiographs between clusters was performed using an ANOVA in a post hoc analysis.


Overall, 75 patients were identified as having severe CD due to sagittal malalignment, and they formed the basis of this study. Their mean age was 64 years, their body mass index was 29 kg/m2, and 66% were female. There were significant correlations between focal alignment/flexibility of maximum kyphosis, cervical lordosis, and thoracic slope minus cervical lordosis (TS-CL) flexibility (r = 0.27, 0.31, and −0.36, respectively). Cluster analysis revealed 3 distinct groups based on alignment and flexibility. Group 1 (a pattern involving a flat neck with lack of compensation) had a large TS-CL mismatch despite flexibility in cervical lordosis; group 2 (a pattern involving focal deformity) had focal kyphosis between 2 adjacent levels but no large regional cervical kyphosis under the setting of a low T1 slope (T1S); and group 3 (a pattern involving a cervicothoracic deformity) had a very large T1S with a compensatory hyperlordosis of the cervical spine.


Three distinct patterns of CD were identified in this cohort: flat neck, focal deformity, and cervicothoracic deformity. One key element to understanding the difference between these groups was the alignment seen on extension radiographs. This information is a first step in developing a classification system that can guide the surgical treatment for CD and the choice of fusion level.

Free access

Kristina Bianco, Robert Norton, Frank Schwab, Justin S. Smith, Eric Klineberg, Ibrahim Obeid, Gregory Mundis Jr., Christopher I. Shaffrey, Khaled Kebaish, Richard Hostin, Robert Hart, Munish C. Gupta, Douglas Burton, Christopher Ames, Oheneba Boachie-Adjei, Themistocles S. Protopsaltis and Virginie Lafage


Three-column resection osteotomies (3COs) are commonly performed for sagittal deformity but have high rates of reported complications. Authors of this study aimed to examine the incidence of and intercenter variability in major intraoperative complications (IOCs), major postoperative complications (POCs) up to 6 weeks postsurgery, and overall complications (that is, both IOCs and POCs). They also aimed to investigate the incidence of and intercenter variability in blood loss during 3CO procedures.


The incidence of IOCs, POCs, and overall complications associated with 3COs were retrospectively determined for the study population and for each of 8 participating surgical centers. The incidence of major blood loss (MBL) over 4 L and the percentage of total blood volume lost were also determined for the study population and each surgical center. Complication rates and blood loss were compared between patients with one and those with two osteotomies, as well as between patients with one thoracic osteotomy (ThO) and those with one lumbar or sacral osteotomy (LSO). Risk factors for developing complications were determined.


Retrospective review of prospectively acquired data for 423 consecutive patients who had undergone 3CO at 8 surgical centers was performed. The incidence of major IOCs, POCs, and overall complications was 7%, 39%, and 42%, respectively, for the study population overall. The most common IOC was spinal cord deficit (2.6%) and the most common POC was unplanned return to the operating room (19.4%). Patients with two osteotomies had more POCs (56% vs 38%, p = 0.04) than the patients with one osteotomy. Those with ThO had more IOCs (16% vs 6%, p = 0.03), POCs (58% vs 34%, p < 0.01), and overall complications (67% vs 37%, p < 0.01) than the patients with LSO. There was significant variation in the incidence of IOCs, POCs, and overall complications among the 8 sites (p < 0.01). The incidence of MBL was 24% for the study population, which varied significantly between sites (p < 0.01). Patients with MBL had a higher risk of IOCs, POCs, and overall complications (OR 2.15, 1.76, and 2.01, respectively). The average percentage of total blood volume lost was 55% for the study population, which also varied among sites (p < 0.01).


Given the complexity of 3COs for spinal deformity, it is important for spine surgeons to understand the risk factors and complication rates associated with these procedures. In this study, the overall incidence of major complications following 3CO procedures was 42%. Risks for developing complications included an older age (> 60 years), two osteotomies, ThO, and MBL.