Browse

You are looking at 1 - 4 of 4 items for

  • By Author: Al-Mefty, Ossama x
  • By Author: Yaşargil, M. Gazi x
Clear All Modify Search
Restricted access

Emad Aboud, Ossama Al-Mefty and M. Gazi Yaşargil

Object. Laboratory training models are essential for developing and refining surgical skills, especially for microsurgery. The closer to live surgery the model is, the greater the benefit. In this paper the authors introduce a cadaver model with unique characteristics: dynamic filling of the cerebral vasculature with colored liquid and clear fluid filling of the arachnoid cisterns. This model is distinctive and has great practical value for training in a wide range of surgical procedures.

Methods. Cadaveric heads were prepared for surgical procedures in the following manner: the carotid arteries (CAs) and vertebral arteries (VAs) in the neck were cannulated, as were the internal jugular veins (JVs) on both sides. Two tubes were introduced into the spinal canal and each one was advanced into one of the cerebellopontine angle cisterns. A CA, VA, or both were then connected to a reservoir containing light red fluid and a pressure of 80 to 120 mm Hg and a pulse rate of 60 beats/minute were established using a pump. The JV on the side currently being dissected was connected to a reservoir containing dark red fluid and kept at a pressure between 20 and 40 mm Hg. The remaining vessels were clamped in the neck. The cisternal tubes were connected to a reservoir of clear fluid that was regulated by an adjustable flow. Nine trainees have tested this model on eight specimens by practicing a variety of surgical procedures and maneuvers, including craniotomies; hemostasis; cisternal and vascular dissection; vascular anastomosis and repair; establishment of arterial bypasses; aneurysm creation, dissection, and clipping; management of an aneurysm rupture; intraparenchymal resection such as amygdalohippocampectomy; ventricular endoscopy and third ventriculostomy; cavernous sinus and skull base approaches; and resection of artificial tumors in the basal cisterns.

Conclusions. This model mimics the normal human anatomy and dynamic vascular filling found in real surgery and presents it from the training perspective, allowing a wide range of skill development and repeated practice. It provides an alternative model to laboratory animals. It is inexpensive and readily available, and has great value for the acquisition and refinement of surgical skills that are not only specific to neurosurgery, but are applicable to other surgical disciplines.

Restricted access

Uğur Türe, M. Gazi Yaşargil, Ossama Al-Mefty and Dianne C. H. Yaşargil

Object. The insula is located at the base of the sylvian fissure and is a potential site for pathological processes such as tumors and vascular malformations. Knowledge of insular anatomy and vascularization is essential to perform accurate microsurgical procedures in this region.

Methods. Arterial vascularization of the insula was studied in 20 human cadaver brains (40 hemispheres). The cerebral arteries were perfused with red latex to enhance their visibility, and they were dissected with the aid of an operating microscope.

Arteries supplying the insula numbered an average of 96 (range 77–112). Their mean diameter measured 0.23 mm (range 0.1–0.8 mm), and the origin of each artery could be traced to the middle cerebral artery (MCA), predominantly the M2 segment. In 22 hemispheres (55%), one to six insular arteries arose from the M1 segment of the MCA and supplied the region of the limen insulae. In an additional 10 hemispheres (25%), one or two insular arteries arose from the M3 segment of the MCA and supplied the region of either the superior or inferior periinsular sulcus. The insular arteries primarily supply the insular cortex, extreme capsule, and, occasionally, the claustrum and external capsule, but not the putamen, globus pallidus, or internal capsule, which are vascularized by the lateral lenticulostriate arteries (LLAs). However, an average of 9.9 (range four–14) insular arteries in each hemisphere, mostly in the posterior insular region, were similar to perforating arteries and some of these supplied the corona radiata. Larger, more prominent insular arteries (insuloopercular arteries) were also observed (an average of 3.5 per hemisphere, range one–seven). These coursed across the surface of the insula and then looped laterally, extending branches to the medial surfaces of the opercula.

Conclusions. Complete comprehension of the intricate vascularization patterns associated with the insula, as well as proficiency in insular anatomy, are prerequisites to accomplishing appropriate surgical planning and, ultimately, to completing successful exploration and removal of pathological lesions in this region.

Restricted access

Uğur Türe, Dianne C. H. Yaşargil, Ossama Al-Mefty and M. Gazi Yaşargil

Object. The insula is one of the paralimbic structures and constitutes the invaginated portion of the cerebral cortex, forming the base of the sylvian fissure. The authors provide a detailed anatomical study of the insular region to assist in the process of conceptualizing a reliable surgical approach to allow for a successful course of surgery.

Methods. The topographic anatomy of the insular region was studied in 25 formalin-fixed brain specimens (50 hemispheres). The periinsular sulci (anterior, superior, and inferior) define the limits of the frontoorbital, frontoparietal, and temporal opercula, respectively. The opercula cover and enclose the insula. The limen insula is located in the depths of the sylvian fissure and constitutes the anterobasal portion of the insula. A central insular sulcus divides the insula into two portions, the anterior insula (larger) and the posterior insula (smaller). The anterior insula is composed of three principal short insular gyri (anterior, middle, and posterior) as well as the accessory and transverse insular gyri. All five gyri converge at the insular apex, which represents the most superficial aspect of the insula. The posterior insula is composed of the anterior and posterior long insular gyri and the postcentral insular sulcus, which separates them. The anterior insula was found to be connected exclusively to the frontal lobe, whereas the posterior insula was connected to both the parietal and temporal lobes. Opercular gyri and sulci were observed to interdigitate within the opercula and to interdigitate the gyri and sulci of the insula. Using the fiber dissection technique, various unique anatomical features and relationships of the insula were determined.

Conclusions. The topographic anatomy of the insular region is described in this article, and a practical terminology for gyral and sulcal patterns of surgical significance is presented. This study clarifies and supplements the information presently available to help develop a more coherent surgical concept.

Restricted access

Uğur Türe, M. Gazi Yaşargil and Ossama Al-Mefty

✓ Surgical approaches to lesions located in the anterior and middle portions of the third ventricle are challenging, even for experienced neurosurgeons. Various exposures involving the foramen of Monro, the choroidal fissure, the fornices, and the lamina terminalis have been advocated in numerous publications. The authors conducted a microsurgical anatomical study in 20 cadaveric brain specimens (40 hemispheres) to identify an exposure of the third ventricle that would avoid compromising vital structures.

An investigation of the variations in the subependymal veins of the lateral ventricle in the region of the foramen of Monro was performed, as these structures are intimately associated with the surgical exposure of the third ventricle. In 16 (80%) of the brain specimens studied, 19 (47.5%) of the hemispheres displayed a posterior location of the anterior septal vein—internal cerebral vein (ASV—ICV) junction, 3 to 13 mm (average 6 mm) beyond the foramen of Monro within the velum interpositum, not adjacent to the posterior margin of the foramen of Monro (the classic description). Based on this finding, the authors advocate opening the choroidal fissure as far as the ASV—ICV junction to enlarge the foramen of Monro posteriorly. This technique achieves adequate access to the anterior and middle portions of the third ventricle without causing injury to vital neural or vascular structures.

The high incidence of posteriorly located ASV—ICV junctions is a significant factor influencing the successful course of surgery. Precise planning of the surgical approach is possible, because the location of the junction is revealed on preoperative neuroradiological studies, in particular on magnetic resonance venography. It can therefore be determined in advance which foramen of Monro qualifies for posterior enlargement to gain the widest possible access to the third ventricle. This technique was applied in three patients with a third ventricular tumor, and knowledge of the venous variations in this region was an important resource in guiding the operative exposure.