Browse

You are looking at 1 - 5 of 5 items for

  • By Author: Walker, Marion L. x
  • By Author: Wellons, John C. x
  • By Author: Simon, Tamara D. x
Clear All
Free access

John R. W. Kestle, Richard Holubkov, D. Douglas Cochrane, Abhaya V. Kulkarni, David D. Limbrick Jr., Thomas G. Luerssen, W. Jerry Oakes, Jay Riva-Cambrin, Curtis Rozzelle, Tamara D. Simon, Marion L. Walker, John C. Wellons III, Samuel R. Browd, James M. Drake, Chevis N. Shannon, Mandeep S. Tamber, William E. Whitehead and The Hydrocephalus Clinical Research Network

OBJECT

In a previous report by the same research group (Kestle et al., 2011), compliance with an 11-step protocol was shown to reduce CSF shunt infection at Hydrocephalus Clinical Research Network (HCRN) centers (from 8.7% to 5.7%). Antibiotic-impregnated catheters (AICs) were not part of the protocol but were used off protocol by some surgeons. The authors therefore began using a new protocol that included AICs in an effort to reduce the infection rate further.

METHODS

The new protocol was implemented at HCRN centers on January 1, 2012, for all shunt procedures (excluding external ventricular drains [EVDs], ventricular reservoirs, and subgaleal shunts). Procedures performed up to September 30, 2013, were included (21 months). Compliance with the protocol and outcome events up to March 30, 2014, were recorded. The definition of infection was unchanged from the authors' previous report.

RESULTS

A total of 1935 procedures were performed on 1670 patients at 8 HCRN centers. The overall infection rate was 6.0% (95% CI 5.1%–7.2%). Procedure-specific infection rates varied (insertion 5.0%, revision 5.4%, insertion after EVD 8.3%, and insertion after treatment of infection 12.6%). Full compliance with the protocol occurred in 77% of procedures. The infection rate was 5.0% after compliant procedures and 8.7% after noncompliant procedures (p = 0.005). The infection rate when using this new protocol (6.0%, 95% CI 5.1%–7.2%) was similar to the infection rate observed using the authors' old protocol (5.7%, 95% CI 4.6%–7.0%).

CONCLUSIONS

CSF shunt procedures performed in compliance with a new infection prevention protocol at HCRN centers had a lower infection rate than noncompliant procedures. Implementation of the new protocol (including AICs) was associated with a 6.0% infection rate, similar to the infection rate of 5.7% from the authors' previously reported protocol. Based on the current data, the role of AICs compared with other infection prevention measures is unclear.

Free access

William E. Whitehead, Jay Riva-Cambrin, John C. Wellons III, Abhaya V. Kulkarni, Samuel Browd, David Limbrick, Curtis Rozzelle, Mandeep S. Tamber, Tamara D. Simon, Chevis N. Shannon, Richard Holubkov, W. Jerry Oakes, Thomas G. Luerssen, Marion L. Walker, James M. Drake and John R. W. Kestle

Object

Shunt survival may improve when ventricular catheters are placed into the frontal horn or trigone of the lateral ventricle. However, techniques for accurate catheter placement have not been developed. The authors recently reported a prospective study designed to test the accuracy of catheter placement with the assistance of intraoperative ultrasound, but the results were poor (accurate placement in 59%). A major reason for the poor accurate placement rate was catheter movement that occurred between the time of the intraoperative ultrasound image and the first postoperative scan (33% of cases). The control group of non–ultrasound using surgeons also had a low rate of accurate placement (accurate placement in 49%). The authors conducted an exploratory post hoc analysis of patients in their ultrasound study to identify factors associated with either catheter movement or poor catheter placement so that improved surgical techniques for catheter insertion could be developed.

Methods

The authors investigated the following risk factors for catheter movement and poor catheter placement: age, ventricular size, cortical mantle thickness, surgeon experience, surgeon experience with ultrasound prior to trial, shunt entry site, shunt hardware at entry site, ventricular catheter length, and use of an ultrasound probe guide for catheter insertion. Univariate analysis followed by multivariate logistic regression models were used to determine which factors were independent risk factors for either catheter movement or inaccurate catheter location.

Results

In the univariate analyses, only age < 6 months was associated with catheter movement (p = 0.021); cortical mantle thickness < 1 cm was near-significant (p = 0.066). In a multivariate model, age remained significant after adjusting for cortical mantle thickness (OR 8.35, exact 95% CI 1.20–infinity). Univariate analyses of factors associated with inaccurate catheter placement showed that age < 6 months (p = 0.001) and a posterior shunt entry site (p = 0.021) were both associated with poor catheter placement. In a multivariate model, both age < 6 months and a posterior shunt entry site were independent risk factors for poor catheter placement (OR 4.54, 95% CI 1.80–11.42, and OR 2.59, 95% CI 1.14–5.89, respectively).

Conclusions

Catheter movement and inaccurate catheter placement are both more likely to occur in young patients (< 6 months). Inaccurate catheter placement is also more likely to occur in cases involving a posterior shunt entry site than those involving an anterior shunt entry site. Future clinical studies aimed at improving shunt placement techniques must consider the effects of young age and choice of entry site on catheter location.

Restricted access

John R. W. Kestle, Jay Riva-Cambrin, John C. Wellons III, Abhaya V. Kulkarni, William E. Whitehead, Marion L. Walker, W. Jerry Oakes, James M. Drake, Thomas G. Luerssen, Tamara D. Simon and Richard Holubkov

Object

Quality improvement techniques are being implemented in many areas of medicine. In an effort to reduce the ventriculoperitoneal shunt infection rate, a standardized protocol was developed and implemented at 4 centers of the Hydrocephalus Clinical Research Network (HCRN).

Methods

The protocol was developed sequentially by HCRN members using the current literature and prior institutional experience until consensus was obtained. The protocol was prospectively applied at each HCRN center to all children undergoing a shunt insertion or revision procedure. Infections were defined on the basis of CSF, wound, or pseudocyst cultures; wound breakdown; abdominal pseudocyst; or positive blood cultures in the presence of a ventriculoatrial shunt. Procedures and infections were measured before and after protocol implementation.

Results

Twenty-one surgeons at 4 centers performed 1571 procedures between June 1, 2007, and February 28, 2009. The minimum follow-up was 6 months. The Network infection rate decreased from 8.8% prior to the protocol to 5.7% while using the protocol (p = 0.0028, absolute risk reduction 3.15%, relative risk reduction 36%). Three of 4 centers lowered their infection rate. Shunt surgery after external ventricular drainage (with or without prior infection) had the highest infection rate. Overall protocol compliance was 74.5% and improved over the course of the observation period. Based on logistic regression analysis, the use of BioGlide catheters (odds ratio [OR] 1.91, 95% CI 1.19–3.05; p = 0.007) and the use of antiseptic cream by any members of the surgical team (instead of a formal surgical scrub by all members of the surgical team; OR 4.53, 95% CI 1.43–14.41; p = 0.01) were associated with an increased risk of infection.

Conclusions

The standardized protocol for shunt surgery significantly reduced shunt infection across the HCRN. Overall protocol compliance was good. The protocol has established a common baseline within the Network, which will facilitate assessment of new treatments. Identification of factors associated with infection will allow further protocol refinement in the future.

Restricted access

John C. Wellons III, Chevis N. Shannon, Abhaya V. Kulkarni, Tamara D. Simon, Jay Riva-Cambrin, William E. Whitehead, W. Jerry Oakes, James M. Drake, Thomas G. Luerssen, Marion L. Walker, John R. W. Kestle and for the Hydrocephalus Clinical Research Network

Object

The purpose of this study was to define the incidence of permanent shunt placement and infection in patients who have undergone the 2 most commonly performed temporizing procedures for posthemorrhagic hydrocephalus (PHH) of prematurity: ventriculosubgaleal (VSG) shunt placement and ventricular reservoir placement for intermittent tapping.

Methods

The 4 centers of the Hydrocephalus Clinical Research Network participated in a retrospective chart review of infants with PHH who underwent treatment at each institution between 2001 and 2006. Patients were included if they had received a diagnosis of Grade 3 or 4 intraventricular hemorrhage, weighed < 1500 g at birth, and had received surgical intervention. The authors determined the incidence of conversion from a temporizing device to a permanent shunt, the incidence of CSF infection during temporization, and the 6-month CSF infection rate after permanent shunt placement.

Results

Thirty-one (86%) of 36 patients who received VSG shunts and 61 (69%) of 88 patients who received ventricular reservoirs received permanent CSF diversion with a shunt (p = 0.05). Five patients (14%) in the VSG shunt group had CSF infections during temporization, compared with 11 patients (13%) in the ventricular reservoir group (p = 0.83). The 6-month incidence of permanent shunt infection in the VSG shunt group was 16% (5 of 31), compared with 12% (7 of 61) in the reservoir placement group (p = 0.65). For the first 6 months after permanent shunt placement, infants with no preceding temporizing procedure had an infection rate of 5% (1 of 20 infants) and those who had undergone a temporizing procedure had an infection rate of 13% (12 of 92; p = 0.45).

Conclusions

The use of intermittent tapping of ventricular reservoirs in this population appears to lead to a lower incidence of permanent shunt placement than the use of VSG shunts. The incidence of infection during temporization and for the initial 6 months after conversion appears comparable for both groups. The apparent difference identified in this pilot study requires confirmation in a more rigorous study.