Browse

You are looking at 1 - 8 of 8 items for

  • By Author: Vaccaro, Alexander R. x
  • By Author: Arnold, Paul M. x
Clear All
Free access

George M. Ghobrial, Christopher M. Maulucci, Mitchell Maltenfort, Richard T. Dalyai, Alexander R. Vaccaro, Michael G. Fehlings, John Street, Paul M. Arnold and James S. Harrop

Object

Thoracolumbar spine injuries are commonly encountered in patients with trauma, accounting for almost 90% of all spinal fractures. Thoracolumbar burst fractures comprise a high percentage of these traumatic fractures (45%), and approximately half of the patients with this injury pattern are neurologically intact. However, a debate over complication rates associated with operative versus nonoperative management of various thoracolumbar fracture morphologies is ongoing, particularly concerning those patients presenting without a neurological deficit.

Methods

A MEDLINE search for pertinent literature published between 1966 and December 2013 was conducted by 2 authors (G.G. and R.D.), who used 2 broad search terms to maximize the initial pool of manuscripts for screening. These terms were “operative lumbar spine adverse events” and “nonoperative lumbar spine adverse events.”

Results

In an advanced MEDLINE search of the term “operative lumbar spine adverse events” on January 8, 2014, 1459 results were obtained. In a search of “nonoperative lumbar spine adverse events,” 150 results were obtained. After a review of all abstracts for relevance to traumatic thoracolumbar spinal injuries, 62 abstracts were reviewed for the “operative” group and 21 abstracts were reviewed for the “nonoperative” group. A total of 14 manuscripts that met inclusion criteria for the operative group and 5 manuscripts that met criteria for the nonoperative group were included.

There were a total of 919 and 436 patients in the operative and nonoperative treatment groups, respectively. There were no statistically significant differences between the groups with respect to age, sex, and length of stay. The mean ages were 43.17 years in the operative and 34.68 years in the nonoperative groups. The majority of patients in both groups were Frankel Grade E (342 and 319 in operative and nonoperative groups, respectively). Among the studies that reported the data, the mean length of stay was 14 days in the operative group and 20.75 in the nonoperative group.

The incidence of all complications in the operative and nonoperative groups was 300 (32.6%) and 21 (4.8%), respectively (p = 0.1065). There was no significant difference between the 2 groups with respect to the incidence of pulmonary, thromboembolic, cardiac, and gastrointestinal complications. However, the incidence of infections (pneumonia, urinary tract infection, wound infection, and sepsis) was significantly higher in the operative group (p = 0.000875). The incidence of instrumentation failure and need for revision surgery was 4.35% (40 of 919), a significant morbidity, and an event unique to the operative category (p = 0.00396).

Conclusions

Due to the limited number of high-quality studies, conclusions related to complication rates of operative and nonoperative management of thoracolumbar traumatic injuries cannot be definitively made. Further prospective, randomized studies of operative versus nonoperative management of thoracolumbar and lumbar spine trauma, with standardized definitions of complications and matched patient cohorts, will aid in properly defining the risk-benefit ratio of surgery for thoracolumbar spine fractures.

Full access

Michael G. Fehlings, Justin S. Smith, Branko Kopjar, Paul M. Arnold, S. Tim Yoon, Alexander R. Vaccaro, Darrel S. Brodke, Michael E. Janssen, Jens R. Chapman, Rick C. Sasso, Eric J. Woodard, Robert J. Banco, Eric M. Massicotte, Mark B. Dekutoski, Ziya L. Gokaslan, Christopher M. Bono and Christopher I. Shaffrey

Object

Rates of complications associated with the surgical treatment of cervical spondylotic myelopathy (CSM) are not clear. Appreciating these risks is important for patient counseling and quality improvement. The authors sought to assess the rates of and risk factors associated with perioperative and delayed complications associated with the surgical treatment of CSM.

Methods

Data from the AOSpine North America Cervical Spondylotic Myelopathy Study, a prospective, multicenter study, were analyzed. Outcomes data, including adverse events, were collected in a standardized manner and externally monitored. Rates of perioperative complications (within 30 days of surgery) and delayed complications (31 days to 2 years following surgery) were tabulated and stratified based on clinical factors.

Results

The study enrolled 302 patients (mean age 57 years, range 29–86) years. Of 332 reported adverse events, 73 were classified as perioperative complications (25 major and 48 minor) in 47 patients (overall perioperative complication rate of 15.6%). The most common perioperative complications included minor cardiopulmonary events (3.0%), dysphagia (3.0%), and superficial wound infection (2.3%). Perioperative worsening of myelopathy was reported in 4 patients (1.3%). Based on 275 patients who completed 2 years of follow-up, there were 14 delayed complications (8 minor, 6 major) in 12 patients, for an overall delayed complication rate of 4.4%. Of patients treated with anterior-only (n = 176), posterior-only (n = 107), and combined anterior-posterior (n = 19) procedures, 11%, 19%, and 37%, respectively, had 1 or more perioperative complications. Compared with anterior-only approaches, posterior-only approaches had a higher rate of wound infection (0.6% vs 4.7%, p = 0.030). Dysphagia was more common with combined anterior-posterior procedures (21.1%) compared with anterior-only procedures (2.3%) or posterior-only procedures (0.9%) (p < 0.001). The incidence of C-5 radiculopathy was not associated with the surgical approach (p = 0.8). The occurrence of perioperative complications was associated with increased age (p = 0.006), combined anterior-posterior procedures (p = 0.016), increased operative time (p = 0.009), and increased operative blood loss (p = 0.005), but it was not associated with comorbidity score, body mass index, modified Japanese Orthopaedic Association score, smoking status, anterior-only versus posterior-only approach, or specific procedures. Multivariate analysis of factors associated with minor or major complications identified age (OR 1.029, 95% CI 1.002–1.057, p = 0.035) and operative time (OR 1.005, 95% CI 1.002–1.008, p = 0.001). Multivariate analysis of factors associated with major complications identified age (OR 1.054, 95% CI 1.015–1.094, p = 0.006) and combined anterior-posterior procedures (OR 5.297, 95% CI 1.626–17.256, p = 0.006).

Conclusions

For the surgical treatment of CSM, the vast majority of complications were treatable and without long-term impact. Multivariate factors associated with an increased risk of complications include greater age, increased operative time, and use of combined anterior-posterior procedures.

Restricted access

James S. Harrop, Alexander R. Vaccaro, R. John Hurlbert, Jared T. Wilsey, Eli M. Baron, Christopher I. Shaffrey, Charles G. Fisher, Marcel F. Dvorak, F. C. Öner, Kirkham B. Wood, Neel Anand, D. Greg Anderson, Moe R. Lim, Joon Y. Lee, Christopher M. Bono, Paul M. Arnold, Y. Raja Rampersaud, Michael G. Fehlings and The Spine Trauma Study Group

Object

A new classification and treatment algorithm for thoracolumbar injuries was recently introduced by Vaccaro and colleagues in 2005. A thoracolumbar injury severity scale (TLISS) was proposed for grading and guiding treatment for these injuries. The scale is based on the following: 1) the mechanism of injury; 2) the integrity of the posterior ligamentous complex (PLC); and 3) the patient’s neurological status. The reliability and validity of assessing injury mechanism and the integrity of the PLC was assessed.

Methods

Forty-eight spine surgeons, consisting of neurosurgeons and orthopedic surgeons, reviewed 56 clinical thoracolumbar injury case histories. Each was classified and scored to determine treatment recommendations according to a novel classification system. After 3 months the case histories were reordered and the physicians repeated the exercise. Validity of this classification was good among reviewers; the vast majority (> 90%) agreed with the system’s treatment recommendations. Surgeons were unclear as to a cogent description of PLC disruption and fracture mechanism.

Conclusions

The TLISS demonstrated acceptable reliability in terms of intra- and interobserver agreement on the algorithm’s treatment recommendations. Replacing injury mechanism with a description of injury morphology and better definition of PLC injury will improve inter- and intraobserver reliability of this injury classification system.