Browse

You are looking at 1 - 10 of 62 items for

  • By Author: Uribe, Juan S. x
Clear All
Free access

Peter A. Christiansen, Shengbin Huang, Justin S. Smith, Mark E. Shaffrey, Juan S. Uribe and Chun-Po Yen

OBJECTIVE

Advancements in less invasive lateral retropleural/retroperitoneal approaches aim to address the limitation of posterolateral approaches and avoid complications associated with anterior open thoracotomy or thoracoabdominal approaches.

METHODS

Consecutive patients treated with a mini-open lateral approach for thoracic or thoracolumbar anterior column pathologies were analyzed in a retrospective case series including clinical and radiographic outcomes. Special attention is given to operative techniques and surgical nuances.

RESULTS

Eleven patients underwent a mini-open lateral retropleural or combined retropleural/retroperitoneal approach for thoracic or thoracolumbar junction lesions. Surgical indications included chronic fracture/deformity (n = 5), acute fracture (n = 2), neoplasm (n = 2), and osteomyelitis (n = 2). The mean length of postoperative hospital stay was 7.2 days (range 2–19 days). All patients ultimately had successful decompression and reconstruction with a mean follow-up of 16.7 months (range 6–29 months). Axial back pain assessed by the visual analog scale improved from a mean score of 8.2 to 2.2. Complications included 1 patient with deep venous thrombosis and pulmonary embolism and 1 with pneumonia. One patient developed increased leg weakness, which subsequently improved. One patient undergoing corpectomy with only lateral plate fixation developed cage subsidence requiring posterior stabilization.

CONCLUSIONS

Mini-open lateral retropleural and retroperitoneal corpectomies can safely achieve anterior column reconstruction and spinal deformity correction for various thoracic and thoracolumbar vertebral pathologies.

Free access

Jakub Godzik, Ifije E. Ohiorhenuan, David S. Xu, Bernardo de Andrada Pereira, Corey T. Walker, Alexander C. Whiting, Jay D. Turner and Juan S. Uribe

OBJECTIVE

Lateral lumbar interbody fusion (LLIF) is a useful minimally invasive technique for achieving anterior interbody fusion and preserving or restoring lumbar lordosis. However, achieving circumferential fusion via posterior instrumentation after an LLIF can be challenging, requiring either repositioning the patient or placing pedicle screws in the lateral position. Here, the authors explore an alternative single-position approach: LLIF in the prone lateral (PL) position.

METHODS

A cadaveric feasibility study was performed using 2 human cadaveric specimens. A retrospective 2-center early clinical series was performed for patients who had undergone a minimally invasive lateral procedure in the prone position between August 2019 and March 2020. Case duration, retractor time, electrophysiological thresholds, implant size, screw accuracy, and complications were recorded. Early postoperative radiographic outcomes were reported.

RESULTS

A PL LLIF was successfully performed in 2 cadavers without causing injury to a vessel or the bowel. No intraoperative subsidence was observed. In the clinical series, 12 patients underwent attempted PL surgery, although 1 case was converted to standard lateral positioning. Thus, 11 patients successfully underwent PL LLIF (89%) across 14 levels: L2–3 (2 of 14 [14%]), L3–4 (6 of 14 [43%]), and L4–5 (6 of 14 [43%]). For the 11 PL patients, the mean (± SD) age was 61 ± 16 years, mean BMI was 25.8 ± 4.8, and mean retractor time per level was 15 ± 6 minutes with the longest retractor time at L2–3 and the shortest at L4–5. No intraoperative subsidence was noted on routine postoperative imaging.

CONCLUSIONS

Performing single-position lateral transpsoas interbody fusion with the patient prone is anatomically feasible, and in an early clinical experience, it appeared safe and reproducible. Prone positioning for a lateral approach presents an exciting opportunity for streamlining surgical access to the lumbar spine and facilitating more efficient surgical solutions with potential clinical and economic advantages.

Restricted access

Paul Park, Khoi D. Than, Praveen V. Mummaneni, Pierce D. Nunley, Robert K. Eastlack, Juan S. Uribe, Michael Y. Wang, Vivian Le, Richard G. Fessler, David O. Okonkwo, Adam S. Kanter, Neel Anand, Dean Chou, Kai-Ming G. Fu, Alexander F. Haddad, Christopher I. Shaffrey, Gregory M. Mundis Jr. and the International Spine Study Group

OBJECTIVE

Surgical decision-making and planning is a key factor in optimizing outcomes in adult spinal deformity (ASD). Minimally invasive spinal (MIS) strategies for ASD have been increasingly used as an option to decrease postoperative morbidity. This study analyzes factors involved in the selection of either a traditional open approach or a minimally invasive approach to treat ASD in a prospective, nonrandomized multicenter trial. All centers had at least 5 years of experience in minimally invasive techniques for ASD.

METHODS

The study enrolled 268 patients, of whom 120 underwent open surgery and 148 underwent MIS surgery. Inclusion criteria included age ≥ 18 years, and at least one of the following criteria: coronal curve (CC) ≥ 20°, sagittal vertical axis (SVA) > 5 cm, pelvic tilt (PT) > 25°, or thoracic kyphosis (TK) > 60°. Surgical approach selection was made at the discretion of the operating surgeon. Preoperative significant differences were included in a multivariate logistic regression analysis to determine odds ratios (ORs) for approach selection.

RESULTS

Significant preoperative differences (p < 0.05) between open and MIS groups were noted for age (61.9 vs 66.7 years), numerical rating scale (NRS) back pain score (7.8 vs 7), CC (36° vs 26.1°), PT (26.4° vs 23°), T1 pelvic angle (TPA; 25.8° vs 21.7°), and pelvic incidence–lumbar lordosis (PI-LL; 19.6° vs 14.9°). No significant differences in BMI (29 vs 28.5 kg/m2), NRS leg pain score (5.2 vs 5.7), Oswestry Disability Index (48.4 vs 47.2), Scoliosis Research Society 22-item questionnaire score (2.7 vs 2.8), PI (58.3° vs 57.1°), LL (38.9° vs 42.3°), or SVA (73.8 mm vs 60.3 mm) were found. Multivariate analysis found that age (OR 1.05, p = 0.002), VAS back pain score (OR 1.21, p = 0.016), CC (OR 1.03, p < 0.001), decompression (OR 4.35, p < 0.001), and TPA (OR 1.09, p = 0.023) were significant factors in approach selection.

CONCLUSIONS

Increasing age was the primary driver for selecting MIS surgery. Conversely, increasingly severe deformities and the need for open decompression were the main factors influencing the selection of traditional open surgery. As experience with MIS surgery continues to accumulate, future longitudinal evaluation will reveal if more experience, use of specialized treatment algorithms, refinement of techniques, and technology will expand surgeon adoption of MIS techniques for adult spinal deformity.

Open access

Ifije Ohiorhenuan, Vedat Deviren and Juan S. Uribe

Deformity correction using minimally invasive surgical (MIS) techniques can be challenging. Here the authors present a case in which an anterior column resection was performed using an MIS lateral approach to restore lumbar lordosis and improve sagittal balance. The authors demonstrate the technique and discuss potential complications and how they may be avoided.

The video can be found here: https://youtu.be/XjOdDeKrKEE.

Restricted access

Praveen V. Mummaneni, Paul Park, Christopher I. Shaffrey, Michael Y. Wang, Juan S. Uribe, Richard G. Fessler, Dean Chou, Adam S. Kanter, David O. Okonkwo, Gregory M. Mundis Jr., Robert K. Eastlack, Pierce D. Nunley, Neel Anand, Michael S. Virk, Lawrence G. Lenke, Khoi D. Than, Leslie C. Robinson, Kai-Ming Fu and the International Spine Study Group (ISSG)

OBJECTIVE

Minimally invasive surgery (MIS) can be used as an alternative or adjunct to traditional open techniques for the treatment of patients with adult spinal deformity. Recent advances in MIS techniques, including advanced anterior approaches, have increased the range of candidates for MIS deformity surgery. The minimally invasive spinal deformity surgery (MISDEF2) algorithm was created to provide an updated framework for decision-making when considering MIS techniques in correction of adult spinal deformity.

METHODS

A modified algorithm was developed that incorporates a patient’s preoperative radiographic parameters and leads to one of 4 general plans ranging from basic to advanced MIS techniques to open deformity surgery with osteotomies. The authors surveyed 14 fellowship-trained spine surgeons experienced with spinal deformity surgery to validate the algorithm using a set of 24 cases to establish interobserver reliability. They then re-surveyed the same surgeons 2 months later with the same cases presented in a different sequence to establish intraobserver reliability. Responses were collected and analyzed. Correlation values were determined using SPSS software.

RESULTS

Over a 3-month period, 14 fellowship-trained deformity surgeons completed the surveys. Responses for MISDEF2 algorithm case review demonstrated an interobserver kappa of 0.85 for the first round of surveys and an interobserver kappa of 0.82 for the second round of surveys, consistent with substantial agreement. In at least 7 cases, there was perfect agreement between the reviewing surgeons. The mean intraobserver kappa for the 2 surveys was 0.8.

CONCLUSIONS

The MISDEF2 algorithm was found to have substantial inter- and intraobserver agreement. The MISDEF2 algorithm incorporates recent advances in MIS surgery. The use of the MISDEF2 algorithm provides reliable guidance for surgeons who are considering either an MIS or an open approach for the treatment of patients with adult spinal deformity.

Free access

Michael Y. Wang, Stacie Tran, G. Damian Brusko, Robert Eastlack, Paul Park, Pierce D. Nunley, Adam S. Kanter, Juan S. Uribe, Neel Anand, David O. Okonkwo, Khoi D. Than, Christopher I. Shaffrey, Virginie Lafage, Gregory M. Mundis Jr., Praveen V. Mummaneni and the MIS-ISSG Group

OBJECTIVE

The past decade has seen major advances in techniques for treating more complex spinal disorders using minimally invasive surgery (MIS). While appealing from the standpoint of patient perioperative outcomes, a major impediment to adoption has been the significant learning curve in utilizing MIS techniques.

METHODS

Data were retrospectively analyzed from a multicenter series of adult spinal deformity surgeries treated at eight tertiary spine care centers in the period from 2008 to 2015. All patients had undergone a less invasive or hybrid approach for a deformity correction satisfying the following inclusion criteria at baseline: coronal Cobb angle ≥ 20°, sagittal vertical axis (SVA) > 5 cm, or pelvic tilt > 20°. Analyzed data included baseline demographic details, severity of deformity, surgical metrics, clinical outcomes (numeric rating scale [NRS] score and Oswestry Disability Index [ODI]), radiographic outcomes, and complications. A minimum follow-up of 2 years was required for study inclusion.

RESULTS

Across the 8-year study period, among 222 patients, there was a trend toward treating increasingly morbid patients, with the mean age increasing from 50.7 to 62.4 years (p = 0.013) and the BMI increasing from 25.5 to 31.4 kg/m2 (p = 0.12). There was no statistical difference in the severity of coronal and sagittal deformity treated over the study period. With regard to radiographic changes following surgery, there was an increasing emphasis on sagittal correction and, conversely, less coronal correction. There was no statistically significant difference in clinical outcomes over the 8-year period, and meaningful improvements were seen in all years (ODI range of improvement: 15.0–26.9). Neither were there statistically significant differences in major complications; however, minor complications were seen less often as the surgeons gained experience (p = 0.064). Operative time was decreased on average by 47% over the 8-year period.

Trends in surgical practice were seen as well. Total fusion construct length was unchanged until the last year when there was a marked decrease in conjunction with a decrease in interbody levels treated (p = 0.004) while obtaining a higher degree of sagittal correction, suggesting more selective but powerful interbody reduction methods as reflected by an increase in the lateral and anterior column resection techniques being utilized.

CONCLUSIONS

The use of minimally invasive methods for adult spinal deformity surgery has evolved over the past decade. Experienced surgeons are treating older and more morbid patients with similar outcomes. A reliance on selective, more powerful interbody approaches is increasing as well.

Restricted access

S. Shelby Burks, Juan S. Uribe, John Paul G. Kolcun, Adisson Fortunel, Jakub Godzik, Konrad Bach and Michael Y. Wang

OBJECTIVE

Minimally invasive techniques are increasingly used in adult deformity surgery as surgeon familiarity improves and long-term data are published. Concerns raised in such cases include pseudarthrosis at levels where interbody grafts are not utilized. Few previous studies have specifically examined the thoracolumbar component of long surgical constructs, which is commonly instrumented without interbody or intertransverse fusion.

METHODS

A retrospective analysis was performed on all patients who underwent hybrid minimally invasive deformity corrections in two academic spine centers over a 9-year period. Inclusion criteria were at least 2 rostral levels instrumented percutaneously, ranging from T8 to L1 as the upper end of the construct. Fusion assessment was made using CT when possible or radiography. Common radiographic parameters and clinical variables were assessed pre- and postoperatively.

RESULTS

A total of 36 patients fit the inclusion criteria. Baseline characteristics included a 1:1.8 male/female ratio, average age of 65.7 years, and BMI of 30.2 kg/m2. Follow-up imaging was obtained at a mean of 35.7 months. The average number of levels fused was 7.5, with an average of 3.4 instrumented percutaneously between T8 and L1, representing a total of 120 rostral levels instrumented percutaneously. Fusion assessment was performed using CT in 69 levels and radiography in 51 levels. Among the 120 rostral levels instrumented percutaneously, robust fusion was noted in 25 (20.8%), with 53 (44.2%) exhibiting some evidence of fusion. Pseudarthrosis was noted in 2 rostral segments (1.7%). There were no instances of proximal hardware revision. Eight patients exhibited radiographic proximal junctional kyphosis (PJK; 22.2%), none of whom underwent surgical intervention.

CONCLUSIONS

In the present series of adult patients with scoliosis undergoing thoracolumbar deformity correction, rostral segments instrumented percutaneously have a very low rate of pseudarthrosis, with radiographic evidence of bone fusion occurring in more than 60% of patients. The rate of PJK was acceptable and similar to other published series.

Restricted access

Paul Park, Kai-Ming Fu, Robert K. Eastlack, Stacie Tran, Gregory M. Mundis Jr., Juan S. Uribe, Michael Y. Wang, Khoi D. Than, David O. Okonkwo, Adam S. Kanter, Pierce D. Nunley, Neel Anand, Richard G. Fessler, Dean Chou, Mark E. Oppenlander, Praveen V. Mummaneni and the International Spine Study Group

OBJECTIVE

It is now well accepted that spinopelvic parameters are correlated with clinical outcomes in adult spinal deformity (ASD). The purpose of this study was to determine whether obtaining optimal spinopelvic alignment was absolutely necessary to achieve a minimum clinically important difference (MCID) or substantial clinical benefit (SCB).

METHODS

A multicenter retrospective review of patients who underwent less-invasive surgery for ASD was conducted. Inclusion criteria were age ≥ 18 years and one of the following: coronal Cobb angle > 20°, sagittal vertical axis (SVA) > 5 cm, pelvic tilt (PT) > 20°, or pelvic incidence to lumbar lordosis (PI-LL) mismatch > 10°. A total of 223 patients who were treated with circumferential minimally invasive surgery or hybrid surgery and had a minimum 2-year follow-up were identified. Based on optimal spinopelvic parameters (PI-LL mismatch ± 10° and SVA < 5 cm), patients were divided into aligned (AL) or malaligned (MAL) groups. The primary clinical outcome studied was the Oswestry Disability Index (ODI) score.

RESULTS

There were 74 patients in the AL group and 149 patients in the MAL group. Age and body mass index were similar between groups. Although the baseline SVA was similar, PI-LL mismatch (9.9° vs 17.7°, p = 0.002) and PT (19° vs 24.7°, p = 0.001) significantly differed between AL and MAL groups, respectively. As expected postoperatively, the AL and MAL groups differed significantly in PI-LL mismatch (−0.9° vs 13.1°, p < 0.001), PT (14° vs 25.5°, p = 0.001), and SVA (11.8 mm vs 48.3 mm, p < 0.001), respectively. Notably, there was no difference in the proportion of AL or MAL patients in whom an MCID (52.75% vs 61.1%, p > 0.05) or SCB (40.5% vs 46.3%, p > 0.05) was achieved for ODI score, respectively. Similarly, no differences in percentage of patients obtaining an MCID or SCB for visual analog scale back and leg pain score were observed. On multivariate analysis controlling for surgical and preoperative demographic differences, achieving optimal spinopelvic parameters was not associated with achieving an MCID (OR 0.645, 95% CI 0.31–1.33) or an SCB (OR 0.644, 95% CI 0.31–1.35) for ODI score.

CONCLUSIONS

Achieving optimal spinopelvic parameters was not a predictor for achieving an MCID or SCB. Since spinopelvic parameters are correlated with clinical outcomes, the authors’ findings suggest that the presently accepted optimal spinopelvic parameters may require modification. Other factors, such as improvement in neurological symptoms and/or segmental instability, also likely impacted the clinical outcomes.