Browse

You are looking at 1 - 5 of 5 items for :

  • Journal of Neurosurgery: Pediatrics x
  • By Author: Theodore, Nicholas x
Clear All
Full access

Eduardo Martinez-del-Campo, Jay D. Turner, Hector Soriano-Baron, Anna G. U. S. Newcomb, Samuel Kalb and Nicholas Theodore

OBJECTIVE

The authors assessed the rate of vertebral growth, curvature, and alignment for multilevel constructs in the cervical spine after occipitocervical fixation (OCF) in pediatric patients and compared these results with those in published reports of growth in normal children.

METHODS

The authors assessed cervical spine radiographs and CT images of 18 patients who underwent occipitocervical arthrodesis. Measurements were made using postoperative and follow-up images available for 16 patients to determine cervical alignment (cervical spine alignment [CSA], C1–7 sagittal vertical axis [SVA], and C2–7 SVA) and curvature (cervical spine curvature [CSC] and C2–7 lordosis angle). Seventeen patients had postoperative and follow-up images available with which to measure vertebral body height (VBH), vertebral body width (VBW), and vertical growth percentage (VG%—that is, percentage change from postoperative to follow-up). Results for cervical spine growth were compared with normal parameters of 456 patients previously reported on in 2 studies.

RESULTS

Ten patients were girls and 8 were boys; their mean age was 6.7 ± 3.2 years. Constructs spanned occiput (Oc)–C2 (n = 2), Oc–C3 (n = 7), and Oc–C4 (n = 9). The mean duration of follow-up was 44.4 months (range 24–101 months). Comparison of postoperative to follow-up measures showed that the mean CSA increased by 1.8 ± 2.9 mm (p < 0.01); the mean C2–7 SVA and C1–7 SVA increased by 2.3 mm and 2.7 mm, respectively (p = 0.3); the mean CSC changed by −8.7° (p < 0.01) and the mean C2–7 lordosis angle changed by 2.6° (p = 0.5); and the cumulative mean VG% of the instrumented levels (C2–4) provided 51.5% of the total cervical growth (C2–7). The annual vertical growth rate was 4.4 mm/year. The VBW growth from C2–4 ranged from 13.9% to 16.6% (p < 0.001). The VBW of C-2 in instrumented patients appeared to be of a smaller diameter than that of normal patients, especially among those aged 5 to < 10 years and 10–15 years, with an increased diameter at the immediately inferior vertebral bodies compensating for the decreased width. No cervical deformation, malalignment, or detrimental clinical status was evident in any patient.

CONCLUSIONS

The craniovertebral junction and the upper cervical spine continue to present normal growth, curvature, and alignment parameters in children with OCF constructs spanning a distance as long as Oc–C4.

Full access

Eduardo Martinez-del-Campo, Jay D. Turner, Leonardo Rangel-Castilla, Hector Soriano-Baron, Samuel Kalb and Nicholas Theodore

OBJECTIVE

If left untreated, occipitocervical (OC) instability may lead to serious neurological injury or death. Open internal fixation is often necessary to protect the neurovascular elements. This study reviews the etiologies for pediatric OC instability, analyzes the radiographic criteria for surgical intervention, discusses surgical fixation techniques, and evaluates long-term postoperative outcomes based on a single surgeon's experience.

METHODS

The charts of all patients < 18 years old who underwent internal OC fixation conducted by the senior author were retrospectively reviewed. Forty consecutive patients were identified for analysis. Patient demographic data, OC junction pathology, radiological diagnostic tools, surgical indications, and outcomes are reported.

RESULTS

The study population consisted of 20 boys and 20 girls, with a mean age of 7.3 years. Trauma (45% [n = 18]) was the most common cause of instability, followed by congenital etiologies (37.5% [n = 15]). The condyle-C1 interval had a diagnostic sensitivity of 100% for atlantooccipital dislocation. The median number of fixated segments was 5 (occiput–C4). Structural bone grafts were used in all patients. Postsurgical neurological improvement was seen in 88.2% (15/17) of patients with chronic myelopathy and in 25% (1/4) of patients with acute myelopathy. Preoperatively, 42.5% (17/40) of patients were neurologically intact and remained unchanged at last follow-up, 42.5% (17/40) had neurological improvement, 12.5% (5/40) remained unchanged, and 2.5% (1/40) deteriorated. All patients had successful fusion at 1-year follow-up. The complication rate was 7.5% (3/40), including 1 case of vertebral artery injury.

CONCLUSIONS

Occipitocervical fixation is safe in children and provides immediate immobilization, with excellent survival and arthrodesis rates. Of the radiographic tools evaluated, the condyle-C1 interval was the most predictive of atlantooccipital dislocation.

Full access

Tsinsue Chen, Karam Moon, Daphne E. deMello, Iman Feiz-Erfan, Nicholas Theodore and Ratan D. Bhardwaj

A 13-year-old boy presented with fever and neck pain and stiffness, which was initially misdiagnosed as culture-negative meningitis. Magnetic resonance images of the brain and cervical spine demonstrated what appeared to be an intradural extramedullary mass at the C1–3 level, resulting in moderate cord compression, and a Chiari Type I malformation. The patient underwent a suboccipital craniectomy and a C1–3 laminectomy with intradural exploration for excisional biopsy and resection. The lesion containing the parasite was extradural, extending laterally through the C2–3 foramina. Inflammatory tissue secondary to Onchocerca lupi infection was identified, and treatment with steroids and doxycycline was initiated. At the 6-month follow-up, the patient remained asymptomatic, with MR images demonstrating a significant reduction in lesional size. However, 10 weeks postoperatively, the infection recurred, necessitating a second operation. The patient was treated with an additional course of doxycycline and is currently maintained on ivermectin therapy. This is the second reported case of cervical O. lupi infection in a human. In the authors' experience, oral doxycycline alone was insufficient in controlling the disease, and the addition of ivermectin therapy was necessary.

Restricted access

Nicholas Theodore, M. Yashar S. Kalani and Volker K. H. Sonntag

Restricted access

M. Yashar S. Kalani, Nikolay L. Martirosyan, Andrew S. Little, Udaya K. Kakarla and Nicholas Theodore

The authors describe a rare case of tumoral calcinosis (TC) of the thoracic spine in a 13-year-old boy with thoracic scoliosis. The patient presented with a 2-year history of back pain. He had no personal or family history of bone disease, deformity, or malignancy. Magnetic resonance imaging revealed a heterogeneously enhancing mass involving the T-7 vertebral body and the left pedicle. Computed tomography findings suggested that the mass was calcified and that this had resulted in scalloping of the vertebral body. The lesion was resected completely by using a left T-7 costotransversectomy and corpectomy. The deformity was corrected with placement of a vertebral body cage and pedicle screw fixation from T-5 to T-9. Pathological analysis of the mass demonstrated dystrophic calcification with marked hypercellularity and immunostaining consistent with TC. This represents the third reported case of vertebral TC in the pediatric population. Pediatric neurosurgeons should be familiar with lesions such as TC, which may be encountered in the elderly and in hemodialysis-dependent populations, and may not always require aggressive resection.