Browse

You are looking at 51 - 60 of 90 items for

  • By Author: Theodore, Nicholas x
Clear All Modify Search
Restricted access

Giriraj K. Sharma, Jennifer M. Eschbacher, Timothy D. Uschold and Nicholas Theodore

Neuroblastoma-like schwannoma is a rare nerve sheath tumor with histological features resembling a neuroblastoma. A comprehensive literature review identified only 10 previous case reports of this condition. The authors present the first reported case of a neuroblastoma-like schwannoma at a spinal nerve root. The patient, a 61-year-old woman, presented with severe pain in the right lower extremity that failed to resolve after conservative management. Magnetic resonance imaging revealed an intradural enhancing lesion extending out of the right neural foramen at L1–2. A right L1–2 hemilaminectomy and facetectomy with gross-total resection of the tumor was performed without complications. Neuroblastoma-like schwannoma was diagnosed based on histopathological examination of the biopsied tumor specimen. A postoperative course of serial examination and imaging was chosen based on a suspected benign postoperative course as in the case of a completely resected schwannoma. The authors present the novel case of neuroblastoma-like schwannoma at a lumbar spinal nerve root and describe the distinguishing pathological features of this rare lesion.

Full access

Aristotelis S. Filippidis, M. Yashar Kalani, Nicholas Theodore and Harold L. Rekate

Object

The definition of tethered cord syndrome (TCS) relies mainly on radiological criteria and clinical picture. The presence of a thickened filum terminale and a low-lying conus medullaris in symptomatic patients is indicative of TCS. The radiological definition of TCS does not take into account cases that involve a normal-lying conus medullaris exhibiting symptoms of the disease.

Methods

The authors performed a MEDLINE search using the terms “tethered cord” and “pathophysiology.” The search returned a total of 134 studies. The studies were further filtered to identify mostly basic research studies in animal models or studies related to the biomechanics of the filum terminale and spinal cord.

Results

Spinal cord traction and the loss of filum terminale elasticity are the triggers that start a cascade of events occurring at the metabolic and vascular levels leading to symptoms of the disease. Traction on the caudal cord results in decreased blood flow causing metabolic derangements that culminate in motor, sensory, and urinary neurological deficits. The untethering operation restores blood flow and reverses the clinical picture in most symptomatic cases.

Conclusions

Although classically defined as a disease of a low-lying conus medullaris, the pathophysiology of TCS is much more complex and is dependent on a structural abnormality, with concomitant altered metabolic and vascular sequelae. Given the complex mechanisms underlying TCS, it is not surprising that the radiological criteria do not adequately address all presentations of the disease.

Restricted access

Leonardo B. C. Brasiliense, Nicholas Theodore, Bruno C. R. Lazaro, Zafar A. Sayed, Fatih Ersay Deniz, Volker K. H. Sonntag and Neil R. Crawford

Object

The object of this study was to investigate the effects of iatrogenic pedicle perforations from screw misplacement on the mean pullout strength of thoracic pedicle screws.

Methods

Forty human thoracic vertebrae (T6–11) from human cadavers were studied. Before pedicle screws were inserted, the specimens were separated into 4 groups according to the type of screw used: 1) standard pedicle screw (no cortical perforation); 2) screw with medial cortical perforation; 3) screw with lateral cortical perforation; and 4) “airball” screw (a screw that completely missed the vertebral body). Consistency among the groups for bone mineral density, pedicle diameter, and screw insertion depth was evaluated. Finally, each screw was pulled out at a constant displacement rate of 10 mm/minute while ultimate strength was recorded.

Results

Compared with well-placed pedicle screws, medially misplaced screws had 8% greater mean pullout strength (p = 0.482) and laterally misplaced screws had 21% less mean pullout strength (p = 0.059). The difference in mean pullout strength between screws with medial and lateral cortical perforations was significant (p = 0.013). Airball screws had only 66% of the mean pullout strength of well-placed screws (p = 0.009) and had 16% lower mean pullout strength than laterally misplaced screws (p = 0.395).

Conclusions

This in vitro study showed a significant difference in mean pullout strength between medial and lateral misplaced pedicle screws. Moreover, airball screws were associated with a significant loss of pullout strength.

Restricted access

Eric M. Horn, Phillip M. Reyes, Seungwon Baek, Mehmet Senoglu, Nicholas Theodore, Volker K. H. Sonntag and Neil R. Crawford

Object

The small diameter of the pedicle can make C-7 pedicle screw insertion dangerous. Although transfacet screws have been studied biomechanically when used in pinning joints, they have not been well studied when used as part of a C7–T1 screw/rod construct. The authors therefore compared C7–T1 fixation using a C-7 transfacet screw/T-1 pedicle screw construct with a construct composed of pedicle screws at both levels.

Methods

Each rigid posterior screw/rod construct was placed in 7 human cadaveric C6–T2 specimens (14 total). Specimens were tested in normal condition, after 2-column instability, and once fixated. Nondestructive, nonconstraining pure moments (maximum 1.5 Nm) were applied to induce flexion, extension, lateral bending, and axial rotation while recording 3D motion optoelectronically. The entire construct was then loaded to failure by dorsal linear force.

Results

There was no significant difference in angular range of motion between the 2 instrumented groups during any loading mode (p > 0.11, nonpaired t-tests). Both constructs reduced motion to < 2° in any direction and allowed significantly less motion than in the normal condition. The C-7 facet screw/T-1 pedicle screw construct allowed a small but significantly greater lax zone than the pedicle screw/rod construct during lateral bending, and it failed under significantly less load than the pedicle screw/rod construct (p < 0.001).

Conclusions

When C-7 transfacet screws are connected to T-1 pedicle screws, they provide equivalent stability of constructs formed by pedicle screws at both levels. Although less resistant to failure, the transfacet screw construct should be a viable alternative in patients with healthy bone.

Restricted access

Neil R. Crawford, K. Zafer Yüksel, Şeref Doğan, Octavio Villasana-Ramos, Julio C. Soto-Barraza, Seungwon Baek, Randall W. Porter, Frederick F. Marciano and Nicholas Theodore

Object

An experiment was performed to study the limits of the ability of screws designed to center themselves in the pedicle during insertion, and to study whether straight-ahead versus inward screw insertion trajectories differ in their resistance to pullout.

Methods

Forty-nine human cadaveric lumbar vertebrae were studied. Pedicle screws were inserted in trajectories starting 0°, 10°, 20°, or 30° from the optimal trajectory, either medially or laterally misdirected. The surgeon then inserted the screw with forward thrust but without resisting the screw's tendency to reorient its own trajectory during insertion. On the opposite pedicle, a control screw was inserted with the more standard inward-angled anatomical trajectory and insertion point. Cortical wall violation during insertion was recorded. Screws were then pulled out at a constant displacement rate while ultimate strength was recorded.

Results

Lateral misdirection as small as 10° was likely to lead to cortical wall violation (3 of 7 violations). Conversely, medial misdirection usually resulted in safe screw insertion (1 of 21 violations for 10°, 20°, or 30° medial misdirection). The resistance to pullout of screws inserted in a straight-ahead trajectory did not differ significantly from that of screws inserted along an inward trajectory (p = 0.68).

Conclusions

Self-tapping, self-drilling pedicle screws can redirect themselves to a much greater extent during medial than during lateral misdirection. The cortical wall is more likely to be violated laterally than medially. The strength of straight-ahead and inward trajectories was equivalent.

Restricted access

Nicholas C. Bambakidis, Eric M. Horn, Peter Nakaji, Nicholas Theodore, Elizabeth Bless, Tammy Dellovade, Chiyuan Ma, Xukui Wang, Mark C. Preul, Stephen W. Coons, Robert F. Spetzler and Volker K. H. Sonntag

Object

Sonic hedgehog (Shh) is a glycoprotein molecule that upregulates the transcription factor Gli1. The Shh protein plays a critical role in the proliferation of endogenous neural precursor cells when directly injected into the spinal cord after a spinal cord injury in adult rodents. Small-molecule agonists of the hedgehog (Hh) pathway were used in an attempt to reproduce these findings through intravenous administration.

Methods

The expression of Gli1 was measured in rat spinal cord after the intravenous administration of an Hh agonist. Ten adult rats received a moderate contusion and were treated with either an Hh agonist (10 mg/kg, intravenously) or vehicle (5 rodents per group) 1 hour and 4 days after injury. The rats were killed 5 days postinjury. Tissue samples were immediately placed in fixative. Samples were immunohistochemically stained for neural precursor cells, and these cells were counted.

Results

Systemic dosing with an Hh agonist significantly upregulated Gli1 expression in the spinal cord (p < 0.005). After spinal contusion, animals treated with the Hh agonist had significantly more nestin-positive neural precursor cells around the rim of the lesion cavity than in vehicle-treated controls (means ± SDs, 46.9 ± 12.9 vs 20.9 ± 8.3 cells/hpf, respectively, p < 0.005). There was no significant difference in the area of white matter injury between the groups.

Conclusions

An intravenous Hh agonist at doses that upregulate spinal cord Gli1 transcription also increases the population of neural precursor cells after spinal cord injury in adult rats. These data support previous findings based on injections of Shh protein directly into the spinal cord.

Full access

Rachid Assina, Tejas Sankar, Nicholas Theodore, Sam P. Javedan, Alan R. Gibson, Kris M. Horn, Michael Berens, Volker K. H. Sonntag and Mark C. Preul

Object

Axonal regeneration may be hindered following spinal cord injury (SCI) by a limited immune response and insufficient macrophage recruitment. This limitation has been partially surmounted in small-mammal models of SCI by implanting activated autologous macrophages (AAMs). The authors sought to replicate these results in a canine model of partial SCI.

Methods

Six dogs underwent left T-13 spinal cord hemisection. The AAMs were implanted at both ends of the lesion in 4 dogs, and 2 other dogs received sham implantations of cell media. Cortical motor evoked potentials (MEPs) were used to assess electrophysiological recovery. Functional motor recovery was assessed with a modified Tarlov Scale. After 9 months, animals were injected with wheat germ agglutinin–horseradish peroxidase at L-2 and killed for histological assessment.

Results

Three of the 4 dogs that received AAM implants and 1 of the 2 negative control dogs showed clear recovery of MEP response. Behavioral assessment showed no difference in motor function between the AAM-treated and control groups. Histological investigation with an axonal retrograde tracer showed neither local fiber crossing nor significant uptake in the contralateral red nucleus in both implanted and negative control groups.

Conclusions

In a large-animal model of partial SCI treated with implanted AAMs, the authors saw no morphological or histological evidence of axonal regeneration. Although they observed partial electrophysiological and functional motor recovery in all dogs, this recovery was not enhanced in animals treated with implanted AAMs. Furthermore, there was no morphological or histological evidence of axonal regeneration in animals with implants that accounted for the observed recovery. The explanation for this finding is probably multifactorial, but the authors believe that the AAM implantation does not produce axonal regeneration, and therefore is a technology that requires further investigation before it can be clinically relied on to ameliorate SCI.

Full access

Eric M. Horn, Nicholas Theodore, Rachid Assina, Robert F. Spetzler, Volker K. H. Sonntag and Mark C. Preul

Object

Venous stasis and intrathecal hypertension are believed to play a significant role in the hypoperfusion present in the spinal cord following injury. Lowering the intrathecal pressure via cerebrospinal fluid (CSF) drainage has been effective in treating spinal cord ischemia during aorta surgery. The purpose of the present study was to determine whether CSF drainage increases spinal cord perfusion and improves outcome after spinal injury in an animal model.

Methods

Anesthetized adult rabbits were subjected to a severe contusion spinal cord injury (SCI). Cerebrospinal fluid was then drained via a catheter to lower the intrathecal pressure by 10 mm Hg. Tissue perfusion was assessed at the site of injury, and values obtained before and after CSF drainage were compared. Two other cohorts of animals were subjected to SCI: 1 group subsequently underwent CSF drainage and the other did not. Results of histological analysis, motor evoked potential and motor function testing were compared between the 2 cohorts at 4 weeks postinjury.

Results

Cerebrospinal fluid drainage led to no significant improvement in spinal cord tissue perfusion. Four weeks after injury, the animals that underwent CSF drainage demonstrated significantly smaller areas of tissue damage at the injury site. There were no differences in motor evoked potentials or motor score outcomes at 4 weeks postinjury.

Conclusions

Cerebrospinal fluid drainage effectively lowers intrathecal pressure and decreases the amount of tissue damage in an animal model of spinal cord injury. Further studies are needed to determine whether different draining regimens can improve motor or electrophysiological outcomes.

Restricted access

Eric M. Horn, Nicholas Theodore, Neil R. Crawford, Nicholas C. Bambakidis and Volker K. H. Sonntag

Object

Lateral mass screws are traditionally used to fixate the subaxial cervical spine, while pedicle screws are used in the thoracic spine. Lateral mass fixation at C-7 is challenging due to thin facets, and placing pedicle screws is difficult due to the narrow pedicles. The authors describe their clinical experience with a novel technique for transfacet screw placement for fixation at C-7.

Methods

A retrospective chart review was undertaken in all patients who underwent transfacet screw placement at C-7. The technique of screw insertion was the same for each patient. Polyaxial screws between 8- and 10-mm-long were used in each case and placed through the facet from a perpendicular orientation. Postoperative radiography and clinical follow-up were analyzed for aberrant screw placement or construct failure.

Results

Ten patients underwent C-7 transfacet screw placement between June 2006 and March 2007. In all but 1 patient screws were placed bilaterally, and the construct lengths ranged from C-3 to T-5. One patient with a unilateral screw had a prior facet fracture that precluded bilateral screw placement. There were no intraoperative complications or screw failures in these patients. After an average of 6 months of follow-up there were no hardware failures, and all patients showed excellent alignment.

Conclusions

The authors present the first clinical demonstration of a novel technique of posterior transfacet screw placement at C-7. These results provide evidence that this technique is safe to perform and adds stability to cervicothoracic fixation.

Restricted access

Sam Safavi-Abbasi, Mehmet Senoglu, Nicholas Theodore, Ryan K. Workman, Alireza Gharabaghi, Iman Feiz-Erfan, Robert F. Spetzler and Volker K. H. Sonntag

Object

The authors conducted a study to evaluate the clinical characteristics and surgical outcomes in patients with spinal schwannomas and without neurofibromatosis (NF).

Methods

The data obtained in 128 patients who underwent resection of spinal schwannomas were analyzed. All cases with neurofibromas and those with a known diagnosis of NF Type 1 or 2 were excluded. Karnofsky Performance Scale (KPS) scores were used to compare patient outcomes when examining the anatomical location and spinal level of the tumor. The neurological outcome was further assessed using the Medical Research Council (MRC) muscle testing scale.

Results

Altogether, 131 schwannomas were treated in 128 patients (76 males and 52 females; mean age 47.7 years). The peak prevalence is seen between the 3rd and 6th decades. Pain was the most common presenting symptom. Gross-total resection was achieved in 127 (97.0%) of the 131 lesions. The nerve root had to be sacrificed in 34 cases and resulted in minor sensory deficits in 16 patients (12.5%) and slight motor weakness (MRC Grade 3/5) in 3 (2.3%). The KPS scores and MRC grades were significantly higher at the time of last follow-up in all patient groups (p = 0.001 and p = 0.005, respectively).

Conclusions

Spinal schwannomas may occur at any level of the spinal axis and are most commonly intradural. The most frequent clinical presentation is pain. Most spinal schwannomas in non-NF cases can be resected totally without or with minor postoperative deficits. Preoperative autonomic dysfunction does not improve significantly after surgical management.