Browse

You are looking at 21 - 30 of 91 items for

  • By Author: Theodore, Nicholas x
Clear All Modify Search
Full access

Nestor G. Rodriguez-Martinez, Luis Perez-Orribo, Samuel Kalb, Phillip M. Reyes, Anna G. U. S. Newcomb, Jeremy Hughes, Nicholas Theodore and Neil R. Crawford

OBJECT

The effects of obesity on lumbar biomechanics are not fully understood. The aims of this study were to analyze the biomechanical differences between cadaveric L4–5 lumbar spine segments from a large group of nonobese (body mass index [BMI] < 30 kg/m2) and obese (BMI ≥ 30 kg/m2) donors and to determine if there were any radiological differences between spines from nonobese and obese donors using MR imaging.

METHODS

A total of 168 intact L4–5 spinal segments (87 males and 81 females) were tested using pure-moment loading, simulating flexion-extension, lateral bending, and axial rotation. Axial compression tests were performed on 38 of the specimens. Sex, age, and BMI were analyzed with biomechanical parameters using 1-way ANOVA, Pearson correlation, and multiple regression analyses. MR images were obtained in 12 specimens (8 from obese and 4 from nonobese donors) using a 3-T MR scanner.

RESULTS

The segments from the obese male group allowed significantly greater range of motion (ROM) than those from the nonobese male group during axial rotation (p = 0.018), while there was no difference between segments from obese and nonobese females (p = 0.687). There were no differences in ROM between spines from obese and nonobese donors during flexion-extension or lateral bending for either sex. In the nonobese population, the ROM during axial rotation was significantly greater for females than for males (p = 0.009). There was no significant difference between sexes in the obese population (p = 0.892). Axial compressive stiffness was significantly greater for the obese than the nonobese population for both the female-only group and the entire study group (p < 0.01); however, the difference was nonsignificant in the male population (p = 0.304). Correlation analysis confirmed a significant negative correlation between BMI and resistance to deformation during axial compression in the female group (R = −0.65, p = 0.004), with no relationship in the male group (R = 0.03, p = 0.9). There was also a significant negative correlation between ROM during flexion-extension and BMI for the female group (R = −0.38, p = 0.001), with no relationship for the male group (R = 0.06, p = 0.58). Qualitative analysis using MR imaging indicated greater facet degeneration and a greater incidence of disc herniations in the obese group than in the control group.

CONCLUSIONS

Based on flexibility and compression tests, lumbar spinal segments from obese versus nonobese donors seem to behave differently, biomechanically, during axial rotation and compression. The differences are more pronounced in women. MR imaging suggests that these differences may be due to greater facet degeneration and an increased amount of disc herniation in the spines from obese individuals.

Full access

Jacob B. Archer, Hai Sun, Phillip A. Bonney, Yan Daniel Zhao, Jared C. Hiebert, Jose A. Sanclement, Andrew S. Little, Michael E. Sughrue, Nicholas Theodore, Jeffrey James and Sam Safavi-Abbasi

OBJECT

This article introduces a classification scheme for extensive traumatic anterior skull base fracture to help stratify surgical treatment options. The authors describe their multilayer repair technique for cerebrospinal fluid (CSF) leak resulting from extensive anterior skull base fracture using a combination of laterally pediculated temporalis fascial-pericranial, nasoseptal-pericranial, and anterior pericranial flaps.

METHODS

Retrospective chart review identified patients treated surgically between January 2004 and May 2014 for anterior skull base fractures with CSF fistulas. All patients were treated with bifrontal craniotomy and received pedicled tissue flaps. Cases were classified according to the extent of fracture: Class I (frontal bone/sinus involvement only); Class II (extent of involvement to ethmoid cribriform plate); and Class III (extent of involvement to sphenoid bone/sinus). Surgical repair techniques were tailored to the types of fractures. Patients were assessed for CSF leak at follow-up. The Fisher exact test was applied to investigate whether the repair techniques were associated with persistent postoperative CSF leak.

RESULTS

Forty-three patients were identified in this series. Thirty-seven (86%) were male. The patients’ mean age was 33 years (range 11–79 years). The mean overall length of follow-up was 14 months (range 5–45 months). Six fractures were classified as Class I, 8 as Class II, and 29 as Class III. The anterior pericranial flap alone was used in 33 patients (77%). Multiple flaps were used in 10 patients (3 salvage) (28%)—1 with Class II and 9 with Class III fractures. Five (17%) of the 30 patients with Class II or III fractures who received only a single anterior pericranial flap had persistent CSF leak (p < 0.31). No CSF leak was found in patients who received multiple flaps. Although postoperative CSF leak occurred only in high-grade fractures with single anterior flap repair, this finding was not significant.

CONCLUSIONS

Extensive anterior skull base fractures often require aggressive treatment to provide the greatest long-term functional and cosmetic benefits. Several vascularized tissue flaps can be used, either alone or in combination. Vascularized flaps are an ideal substrate for cranial base repair. Dual and triple flap techniques that combine the use of various anterior, lateral, and nasoseptal flaps allow for a comprehensive arsenal in multilayered skull base repair and salvage therapy for extensive and severe fractures.

Full access

Nestor G. Rodriguez-Martinez, Sam Safavi-Abbasi, Luis Perez-Orribo, Anna G. U. S. Newcomb, Phillip M. Reyes, Galyna Loughran, Nicholas Theodore and Neil R. Crawford

OBJECT

The Universal Clamp Spinal Fixation System (UC) is a novel sublaminar connection for the spine that is currently used in conjunction with pedicle screws at the thoracic levels for the correction of scoliosis. This device allows the surgeon to attach rods and incorporate a pedicle screw construction. The flexible composition of the UC should provide flexibility intermediate to the uninstrumented spine and an all-screw construct. This hypothesis was tested in vitro using nondestructive flexibility testing of human cadaveric spine segments.

METHODS

Six unembalmed human cadaveric thoracic spine segments from T-3 to T-11 were used. The specimens were tested under the following conditions: 1) intact; 2) after bilateral screws were placed at T4-T10 and interconnected with longitudinal rods; 3) after placement of a hybrid construction with screws at T-4, T-7, and T-10 with an interconnecting rod on one side and screws at T-4 and T-10 with the UC at T5–9 on the contralateral side; (4) after bilateral screws were placed at T-4 and T-10 and interconnected with rods and bilateral UC were placed at T5–9; and 5) after bilateral screws at T-4 and T-10 were placed and interconnected with rods and bilateral sublaminar cables were placed at T5–9. Pure moments of 6.0 Nm were applied while optoelectronically recording 3D angular motion.

RESULTS

Bilateral UC placement and bilateral sublaminar cables both resulted in a significantly greater range of motion than bilateral pedicle screws during lateral bending and axial rotation, but not during flexion or extension. There were no differences in stability between bilateral UC and bilateral cables. The construct with limited screws on one side and UC contralaterally showed comparable stability to bilateral UC and bilateral cables.

CONCLUSIONS

These results support using the UC as a therapeutic option for spinal stabilization because it allows comparable stability to the sublaminar cables and provides flexibility intermediate to that of the uninstrumented spine and an all-screw construct. Equivalent stability of the hybrid, bilateral UC, and bilateral cable constructs indicates that 6-level UC provides stability comparable to that of a limited (3-point) pedicle screw-rod construct.

Full access

Tsinsue Chen, Karam Moon, Daphne E. deMello, Iman Feiz-Erfan, Nicholas Theodore and Ratan D. Bhardwaj

A 13-year-old boy presented with fever and neck pain and stiffness, which was initially misdiagnosed as culture-negative meningitis. Magnetic resonance images of the brain and cervical spine demonstrated what appeared to be an intradural extramedullary mass at the C1–3 level, resulting in moderate cord compression, and a Chiari Type I malformation. The patient underwent a suboccipital craniectomy and a C1–3 laminectomy with intradural exploration for excisional biopsy and resection. The lesion containing the parasite was extradural, extending laterally through the C2–3 foramina. Inflammatory tissue secondary to Onchocerca lupi infection was identified, and treatment with steroids and doxycycline was initiated. At the 6-month follow-up, the patient remained asymptomatic, with MR images demonstrating a significant reduction in lesional size. However, 10 weeks postoperatively, the infection recurred, necessitating a second operation. The patient was treated with an additional course of doxycycline and is currently maintained on ivermectin therapy. This is the second reported case of cervical O. lupi infection in a human. In the authors' experience, oral doxycycline alone was insufficient in controlling the disease, and the addition of ivermectin therapy was necessary.

Full access

Nikolay L. Martirosyan, M. Yashar S. Kalani, G. Michael Lemole Jr., Robert F. Spetzler, Mark C. Preul and Nicholas Theodore

OBJECT

The arterial basket of the conus medullaris (ABCM) consists of 1 or 2 arteries arising from the anterior spinal artery (ASA) and circumferentially connecting the ASA and the posterior spinal arteries (PSAs). The arterial basket can be involved in arteriovenous fistulas and arteriovenous malformations of the conus. In this article, the authors describe the microsurgical anatomy of the ABCM with emphasis on its morphometric parameters and important role in the intrinsic blood supply of the conus medullaris.

METHODS

The authors performed microsurgical dissections on 16 formalin-fixed human spinal cords harvested within 24 hours of death. The course, diameter, and branching angles of the arteries comprising the ABCM were then identified and measured. In addition, histological sections were obtained to identify perforating vessels arising from the ABCM.

RESULTS

The ASA tapers as it nears the conus medullaris (mean preconus diameter 0.7 ± 0.12 mm vs mean conus diameter 0.38 ± 0.08 mm). The ASA forms an anastomotic basket with the posterior spinal artery (PSA) via anastomotic branches. In most of the specimens (n= 13, 81.3%), bilateral arteries formed connections between the ASA and PSA. However, in the remaining specimens (n= 3, 18.7%), a unilateral right-sided anastomotic artery was identified. The mean diameter of the right ABCM branch was 0.49 ± 0.13 mm, and the mean diameter of the left branch was 0.53 ± 0.14 mm. The mean branching angles of the arteries forming the anastomotic basket were 95.9° ± 36.6° and 90° ± 34.3° for the right- and left-sided arteries, respectively. In cases of bilateral arterial anastomoses between the ASA and PSA, the mean distance between the origins of the arteries was 4.5 ± 3.3 mm. Histological analysis revealed numerous perforating vessels supplying tissue of the conus medullaris.

CONCLUSIONS

The ABCM is a critical anastomotic connection between the ASA and PSA, which play an important role in the intrinsic blood supply of the conus medullaris. The ABCM provides an important compensatory function in the blood supply of the spinal cord. Its involvement in conus medullaris vascular malformations makes it a critical anatomical structure.

Full access

Mark E. Oppenlander, Forrest D. Hsu, Patrick Bolton and Nicholas Theodore

Although exceedingly rare, catastrophic neurological decline may result from endotracheal intubation of patients with preexisting cervical spine disease. The authors report on 2 cases of quadriplegia resulting from emergent endotracheal intubation in the intensive care unit.

A 68-year-old man with ankylosing spondylitis became quadriplegic after emergent intubation. A new C6–7 fracturedislocation was identified, and the patient underwent emergent open reduction and C4–T2 posterior fixation and fusion. The patient remained quadriplegic and ultimately died of pneumonia 1 year later. This is the first report with radiographic documentation of a cervical fracture-dislocation resulting from intubation in a patient with ankylosing spondylitis.

A 73-year-old man underwent posterior C6–T1 decompression and fixation for a C6–7 fracture. On postoperative Day 12, emergent intubation for respiratory distress resulted in C6-level quadriplegia. Imaging revealed acute spondyloptosis at C6–7, and the patient underwent emergent open reduction with revision and extension of posterior fusion from C-3 to T-2. He remained quadriplegic and ventilator dependent. Five days after the second operation, care was withdrawn. This is the first report of intubation as a cause of significant neurological decline related to disruption of a recently fixated cervical fracture.

Risk factors are identified and pertinent literature is reviewed for cases of catastrophic neurological complications after emergent endotracheal intubation. Strategies for obtaining airway control in patients with cervical spine pathology are also identified. Awareness of the potential dangers of airway management in patients with cervical spine pathology is critical for all involved subspecialty team members.