Browse

You are looking at 71 - 80 of 97 items for

  • By Author: Theodore, Nicholas x
Clear All
Restricted access

Sam Safavi-Abbasi, Joseph M. Zabramski, Pushpa Deshmukh, Cassius V. Reis, Nicholas C. Bambakidis, Nicholas Theodore, Neil R. Crawford, Robert F. Spetzler and Mark C. Preul

Object

The authors quantitatively assessed the effects of balloon inflation as a model of tumor compression on the brainstem, cranial nerves, and clivus by measuring the working area, angle of attack, and brain shift associated with the retrosigmoid approach.

Methods

Six silicone-injected cadaveric heads were dissected bilaterally via the retrosigmoid approach. Quantitative data were generated, including key anatomical points on the skull base and brainstem. All parameters were measured before and after inflation of a balloon catheter (inflation volume 4.8 ml, diameter 20 mm) intended to mimic tumor compression.

Results

Balloon inflation significantly shifted (p < 0.001) the brainstem and cranial nerve foramina (mean [± standard deviation] displacement of upper brainstem, 10.2 ± 3.7 mm; trigeminal nerve exit, 6.99 ± 2.38 mm; facial nerve exit, 9.52 ± 4.13 mm; and lower brainstem, 13.63 ± 8.45 mm). The area of exposure at the petroclivus was significantly greater with balloon inflation than without (change, 316.26 ± 166.75 mm2; p < 0.0001). Before and after balloon inflation, there was no significant difference in the angles of attack at the origin of the trigeminal nerve (p > 0.5).

Conclusions

This study adds an experimental component to the emerging field of quantitative neurosurgical anatomy. Balloon inflation can be used to model the effects of a mass lesion. The tumor simulation created “natural” retraction and an opening toward the upper clivus. The findings may be helpful in selecting a surgical approach to increase the working space for resection of certain extraaxial tumors.

Restricted access

Iman Feiz-Erfan, Eric M. Horn, Nicholas Theodore, Joseph M. Zabramski, Jeffrey D. Klopfenstein, Gregory P. Lekovic, Felipe C. Albuquerque, Shahram Partovi, Pamela W. Goslar and Scott R. Petersen

Object

Skull base fractures are often associated with potentially devastating injuries to major neural arteries in the head and neck, but the incidence and pattern of this association are unknown.

Methods

Between April and September 2002, 1738 Level 1 trauma patients were admitted to St. Joseph's Hospital and Medical Center in Phoenix, Arizona. Among them, a skull base fracture was diagnosed in 78 patients following computed tomography (CT) scans. Seven patients had no neurovascular imaging performed and were excluded. Altogether, 71 patients who received a diagnosis of skull base fractures after CT and who also underwent a neurovascular imaging study were included (54 men and 17 women, mean age 29 years, range 1–83 years). Patients underwent CT angiography, magnetic resonance angiography, or digital subtraction angiography of the head and craniovertebral junction, or combinations thereof.

Results

Nine neurovascular injuries were identified in six (8.5%) of the 71 patients. Fractures of the clivus were very likely to be associated with neurovascular injury (p < 0.001). A high risk of neurovascular injury showed a strong tendency to be associated with fractures of the sella turcica–sphenoid sinus complex (p = 0.07).

Conclusions

The risk of associated blunt neurovascular injury appears to be significant in Level 1 trauma patients in whom a diagnosis of skull base fracture has been made using CT. The incidence of neurovascular trauma is particularly high in patients with clival fractures. The authors recommend neurovascular imaging for Level 1 trauma patients with a high-risk fracture pattern of the central skull base to rule out cerebrovascular injuries.

Full access

Sam Safavi-Abbasi, Leonardo B. C. Brasiliense, Ryan K. Workman, Melanie C. Talley, Iman Feiz-Erfan, Nicholas Theodore, Robert F. Spetzler and Mark C. Preul

✓In 25 years, the Mongolian army of Genghis Khan conquered more of the known world than the Roman Empire accomplished in 400 years of conquest. The recent revised view is that Genghis Khan and his descendants brought about “pax Mongolica” by securing trade routes across Eurasia. After the initial shock of destruction by an unknown barbaric tribe, almost every country conquered by the Mongols was transformed by a rise in cultural communication, expanded trade, and advances in civilization. Medicine, including techniques related to surgery and neurological surgery, became one of the many areas of life and culture that the Mongolian Empire influenced.

Restricted access

Seref Dogan, Sam Safavi-Abbasi, Nicholas Theodore, Steven W. Chang, Eric M. Horn, Nittin R. Mariwalla, Harold L. Rekate and Volker K. H. Sonntag

Object

The authors evaluated the mechanisms and patterns of thoracic, lumbar, and sacral spinal injuries in a pediatric population as well as factors affecting the management and outcome of these injuries.

Methods

The records of 89 patients (46 boys and 43 girls; mean age 13.2 years, range 3–16 years) with thoracic, lumbar, or sacral injuries were reviewed. Motor vehicle accidents were the most common cause of injury. Eighty-two patients (92.1%) were between 10 and 16 years old, and seven (7.9%) were between 3 and 9 years old. Patient injuries included fracture (91%), fracture and dislocation (6.7%), dislocation (1.1%), and ligamentous injury (1.1%). The L2–5 region was the most common injury site (29.8%) and the sacrum the least common injury site (5%). At the time of presentation 85.4% of the patients were neurologically intact, 4.5% had incomplete injuries, and 10.1% had complete injuries. Twenty-six percent of patients underwent surgery for their injuries whereas 76% received nonsurgical treatment. In patients treated surgically, an anterior approach was used in six patients (6.7%), a posterior approach in 16 (18%), and a combined approach in one (1.1%). Postoperatively, six patients (26.1%) with neurological deficits improved, one of whom recovered fully from an initially complete injury.

Conclusions

Thoracic and lumbar spine injuries were most common in children older than 9 years. Multilevel injuries were common and warranted imaging evaluation of the entire spinal column. Most patients were treated conservatively. The prognosis for neurological recovery is related to the initial severity of the neurological injuries. Some pediatric patients with devastating spinal cord injuries can recover substantial neurological function.

Restricted access

Rogerio Rocha, Sam Safavi-Abbasi, Cassius Reis, Nicholas Theodore, Nicholas Bambakidis, Evandro De Oliveira, Volker K. H. Sonntag and Neil R. Crawford

Object

The authors measured relevant quantitative anatomical parameters to define safety zones for the placement of C-1 posterior screws.

Methods

Nineteen linear, two angular, and four surface parameters of 20 dried atlantal specimens were evaluated. The Optotrak 3020 system was used to define the working area. Ideal angles for screw positioning were measured using digital radiographs and a free image-processing program. Six silicone-injected cadaveric heads were dissected bilaterally to study related neurovascular anatomy.

The depth (range 5.2–9.4 mm, mean 7.2 ± 1.1 mm) and width (range 5.2–8.1 mm, mean 6.5 ± 0.9 mm) of the transverse foramen varied considerably among specimens. The mean posterior working area was 43.3 mm2. All specimens accommodated 3.5-mm-diameter screws, and 93% accepted 4-mm-diameter screws. In 10 specimens (50%), partial removal of the posterior arch was necessary to accommodate a 4-mm screw. The mean maximum angle of medialization was 16.7 ± 1.3°; the mean maximum superior angulation was 21.7 ± 4.7°.

Conclusions

The anatomical configuration of the atlas and vertebral artery (VA) varied considerably among the cadaveric specimens. The heights of the C-1 pedicle, posterior arch, and posterior lamina determine the posterior working area available for screw placement. The inferior insertion of the posterior arch may have to be drilled to increase this working area, but doing so risks injury to the VA. A dense venous plexus with multiple anastomoses may cover the screw entry site, potentially obscuring the operative view and increasing the risk of hemorrhage.

Restricted access

Eric M. Horn, Iman Feiz-Erfan, Gregory P. Lekovic, Curtis A. Dickman, Volker K. H. Sonntag and Nicholas Theodore

Object

Although rare, traumatic occipitoatlantal dislocation (OAD) injuries are associated with a high mortality rate. The authors evaluated the imaging and clinical factors that determined treatment and were predictive of outcomes, respectively, in survivors of this injury.

Methods

The medical records and imaging studies obtained in 33 patients with OAD were reviewed retrospectively. Clinical factors that predicted outcomes, especially neurological injury at presentation and imaging findings, were evaluated.

The most sensitive method for the diagnosis of OAD was the measurement of basion axial–basion dens interval on computed tomography (CT) scanning. Five patients with severe traumatic brain injuries (TBIs) were not treated and subsequently died. Of the 28 patients in whom treatment was performed, 23 underwent fusion and five were fitted with an external orthosis. Abnormal findings of the occipitoatlantal ligaments on magnetic resonance (MR) imaging, associated with no or questionable abnormalities on CT scanning, provided the rationale for nonoperative treatment. Of the 28 patients treated for their injuries, perioperative death occurred in five, three of whom had presented with severe neurological injuries. The mortality rate was highest in patients with a TBI at presentation. The mortality rate was lower in patients presenting with a spinal cord injury, but in this group there was a higher rate of persistent neurological deficits.

Conclusions

The spines in patients with CT-documented OAD are most likely unstable and need surgical fixation. In patients for whom CT findings are normal and MR imaging findings suggest marginal abnormalities, nonoperative treatment should be considered. The best predictors of outcome were severe brain or upper cervical injuries at initial presentation.

Restricted access

Ronald H. Uscinski

Restricted access

Eric M. Horn, Ruth E. Bristol, Iman Feiz-Erfan, Elisa J. Beres, Nicholas C. Bambakidis and Nicholas Theodore

✓Pseudomeningoceles rarely develop after cervical trauma; in all reported cases the lesions have extended outside the spinal canal.

The authors report the first known cases of anterior cervical pseudomeningoceles contained entirely within the spinal canal and causing cord compression and neurological injury. The authors retrospectively reviewed the cases of three patients with traumatic cervical spine injuries and concomitant compressive anterior pseudomeningoceles. The lesion was recognized in the first case when the patient’s neurological status declined after he sustained a severe atlantoaxial injury; the pseudomeningocele was identified intraoperatively and decompressed. After the decompressive surgery, the patient’s severe tetraparesis partially resolved. In the other two patients diagnoses of similar pseudomeningoceles were established by magnetic resonance imaging. Both patients were treated conservatively, and their mild to moderate hemiparesis due to the pseudomeningocele-induced compression abated.

The high incidence of anterior cervical pseudomeningoceles seen at the authors’ institution within a relatively brief period suggests that this lesion is not rare. The authors believe that it is important to recognize the compressive nature of these lesions and their potential to cause devastating neurological injury.

Restricted access

Eric M. Horn, Jonathan S. Hott, Randall W. Porter, Nicholas Theodore, Stephen M. Papadopoulos and Volker K. H. Sonntag

✓ Atlantoaxial stabilization has evolved from simple posterior wiring to transarticular screw fixation. In some patients, however, the course of the vertebral artery (VA) through the axis varies, and therefore transarticular screw placement is not always feasible. For these patients, the authors have developed a novel method of atlantoaxial stabilization that does not require axial screws. In this paper, they describe the use of this technique in the first 10 cases.

Ten consecutive patients underwent the combined C1–3 lateral mass–sublaminar axis cable fixation technique. The mean age of the patients was 62.6 years (range 23–84 years). There were six men and four women. Eight patients were treated after traumatic atlantoaxial instability developed (four had remote trauma and previous nonunion), whereas in the other two atlantoaxial instability was caused by arthritic degeneration. All had VA anatomy unsuitable to traditional transarticular screw fixation.

There were no intraoperative complications in any of the patients. Postoperative computed tomography studies demonstrated excellent screw positioning in each patient. Nine patients were treated postoperatively with the aid of a rigid cervical orthosis. The remaining patient was treated using a halo fixation device. One patient died of respiratory failure 2 months after surgery. Follow-up data (mean follow-up duration 13.1 months) were available for seven of the remaining nine patients and demonstrated a stable construct with fusion in each patient.

The authors present an effective alternative method in which C1–3 lateral mass screw fixation is used to treat patients with unfavorable anatomy for atlantoaxial transarticular screw fixation. In this series of 10 patients, the method was a safe and effective way to provide stabilization in these anatomically difficult patients.

Restricted access

Eric M. Horn, Nicholas Theodore, Iman Feiz-Erfan, Gregory P. Lekovic, Curtis A. Dickman and Volker K. H. Sonntag

Object

The risk factors of halo fixation in elderly patients have never been analyzed. The authors therefore retrospectively reviewed data obtained in the treatment of such cases.

Methods

A discharge database was searched for patients 70 years of age or older who had undergone placement of a halo device. In a search of cases managed between April 1999 and February 2005, data pertaining to 53 patients (mean age 79.9 years [range 70–97 years]) met these criteria. Forty-one patients were treated for traumatic injuries. Ten patients had deficits ranging from radiculopathy to quadriparesis, and 43 had no neurological deficit. Adequate follow-up material was available in 42 patients (mean treatment duration 91 days). Halo immobilization was the only treatment in 21 patients, and adjunctive surgical fixation was undertaken in the other 21 patients. There were 31 complications in 22 patients: respiratory distress in four patients, dysphagia in six, and pin-related complications in 10. Eight patients died; in two of these cases, the cause of death was clearly unrelated to the halo brace. The other six patients died of respiratory failure and cardiovascular collapse (perioperative mortality rate 14%). Three patients who died had sustained acute trauma and three had undergone surgical stabilization.

Conclusions

External halo fixation can be used safely to treat cervical instability in elderly patients. The high complication rate in this population may reflect the significant incidence of underlying disease processes.