Browse

You are looking at 21 - 30 of 309 items for

  • By Author: Spetzler, Robert F. x
Clear All
Free access

Robert F. Spetzler, Joseph M. Zabramski, Cameron G. McDougall, Felipe C. Albuquerque, Nancy K. Hills, Robert C. Wallace and Peter Nakaji

OBJECTIVE

The Barrow Ruptured Aneurysm Trial (BRAT) is a prospective, randomized trial in which treatment with clipping was compared to treatment with coil embolization. Patients were randomized to treatment on presentation with any nontraumatic subarachnoid hemorrhage (SAH). Because all other randomized trials comparing these 2 types of treatments have been limited to saccular aneurysms, the authors analyzed the current BRAT data for this subgroup of lesions.

METHODS

The primary BRAT analysis included all sources of SAH: nonaneurysmal lesions; saccular, blister, fusiform, and dissecting aneurysms; and SAHs from an aneurysm associated with either an arteriovenous malformation or a fistula. In this post hoc review, the outcomes for the subgroup of patients with saccular aneurysms were further analyzed by type of treatment. The extent of aneurysm obliteration was adjudicated by an independent neuroradiologist not involved in treatment.

RESULTS

Of the 471 patients enrolled in the BRAT, 362 (77%) had an SAH from a saccular aneurysm. Patients with saccular aneurysms were assigned equally to the clipping and the coiling cohorts (181 each). In each cohort, 3 patients died before treatment and 178 were treated. Of the 178 clip-assigned patients with saccular aneurysms, 1 (1%) was crossed over to coiling, and 64 (36%) of the 178 coil-assigned patients were crossed over to clipping. There was no statistically significant difference in poor outcome (modified Rankin Scale score > 2) between these 2 treatment arms at any recorded time point during 6 years of follow-up. After the initial hospitalization, 1 of 241 (0.4%) clipped saccular aneurysms and 21 of 115 (18%) coiled saccular aneurysms required retreatment (p < 0.001). At the 6-year follow-up, 95% (95/100) of the clipped aneurysms were completely obliterated, compared with 40% (16/40) of the coiled aneurysms (p < 0.001). There was no difference in morbidity between the 2 treatment groups (p = 0.10).

CONCLUSIONS

In the subgroup of patients with saccular aneurysms enrolled in the BRAT, there was no significant difference between modified Rankin Scale outcomes at any follow-up time in patients with saccular aneurysms assigned to clipping compared with those assigned to coiling (intent-to-treat analysis). At the 6-year follow-up evaluation, rates of retreatment and complete aneurysm obliteration significantly favored patients who underwent clipping compared with those who underwent coiling.

Clinical trial registration no.: NCT01593267 (clinicaltrials.gov)

Full access

Sam Safavi-Abbasi, M. Yashar S. Kalani, Ben Frock, Hai Sun, Kaan Yagmurlu, Felix Moron, Laura A. Snyder, Randy J. Hlubek, Joseph M. Zabramski, Peter Nakaji and Robert F. Spetzler

OBJECTIVE

Fusiform cerebral aneurysms represent a small portion of intracranial aneurysms; differ in natural history, anatomy, and pathology; and can be difficult to treat compared with saccular aneurysms. The purpose of this study was to examine the techniques of treatment of ruptured and unruptured fusiform intracranial aneurysms and patient outcomes.

METHODS

In 45 patients with fusiform aneurysms, the authors retrospectively reviewed the presentation, location, and shape of the aneurysm; the microsurgical technique; the outcome at discharge and last follow-up; and the change in the aneurysm at last angiographic follow-up.

RESULTS

Overall, 48 fusiform aneurysms were treated in 45 patients (18 male, 27 female) with a mean age of 49 years (median 51 years; range 6 months–76 years). Twelve patients (27%) had ruptured aneurysms and 33 (73%) had unruptured aneurysms. The mean aneurysm size was 8.9 mm (range 6–28 mm). The aneurysms were treated by clip reconstruction (n = 22 [46%]), clip-wrapping (n = 18 [38%]), and vascular bypass (n = 8 [17%]). The mean (SD) hospital stay was 19.0 ± 7.4 days for the 12 patients with subarachnoid hemorrhage and 7.0 ± 5.6 days for the 33 patients with unruptured aneurysms. The mean follow-up was 38.7 ± 29.5 months (median 36 months; range 6–96 months). The mean Glasgow Outcome Scale score for the 12 patients with subarachnoid hemorrhage was 3.9; for the 33 patients with unruptured aneurysms, it was 4.8. No rehemorrhages occurred during follow-up. The overall annual risk of recurrence was 2% and that of rehemorrhage was 0%.

CONCLUSIONS

Fusiform and dolichoectatic aneurysms involving the entire vessel wall must be investigated individually. Although some of these aneurysms may be amenable to primary clipping and clip reconstruction, these complex lesions often require alternative microsurgical and endovascular treatment. These techniques can be performed with acceptable morbidity and mortality rates and with low rates of early rebleeding and recurrence.

Full access

Christopher D. Wilson, Sam Safavi-Abbasi, Hai Sun, M. Yashar S. Kalani, Yan D. Zhao, Michael R. Levitt, Ricardo A. Hanel, Eric Sauvageau, Timothy B. Mapstone, Felipe C. Albuquerque, Cameron G. McDougall, Peter Nakaji and Robert F. Spetzler

OBJECTIVE

Aneurysmal subarachnoid hemorrhage (aSAH) may be complicated by hydrocephalus in 6.5%–67% of cases. Some patients with aSAH develop shunt dependency, which is often managed by ventriculoperitoneal shunt placement. The objectives of this study were to review published risk factors for shunt dependency in patients with aSAH, determine the level of evidence for each factor, and calculate the magnitude of each risk factor to better guide patient management.

METHODS

The authors searched PubMed and MEDLINE databases for Level A and Level B articles published through December 31, 2014, that describe factors affecting shunt dependency after aSAH and performed a systematic review and meta-analysis, stratifying the existing data according to level of evidence.

RESULTS

On the basis of the results of the meta-analysis, risk factors for shunt dependency included high Fisher grade (OR 7.74, 95% CI 4.47–13.41), acute hydrocephalus (OR 5.67, 95% CI 3.96–8.12), in-hospital complications (OR 4.91, 95% CI 2.79–8.64), presence of intraventricular blood (OR 3.93, 95% CI 2.80–5.52), high Hunt and Hess Scale score (OR 3.25, 95% CI 2.51–4.21), rehemorrhage (OR 2.21, 95% CI 1.24–3.95), posterior circulation location of the aneurysm (OR 1.85, 95% CI 1.35–2.53), and age ≥ 60 years (OR 1.81, 95% CI 1.50–2.19). The only risk factor included in the meta-analysis that did not reach statistical significance was female sex (OR 1.13, 95% CI 0.77–1.65).

CONCLUSIONS

The authors identified several risk factors for shunt dependency in aSAH patients that help predict which patients are likely to require a permanent shunt. Although some of these risk factors are not independent of each other, this information assists clinicians in identifying at-risk patients and managing their treatment.

Full access

Kaan Yağmurlu, Hasan A. Zaidi, M. Yashar S. Kalani, Albert L. Rhoton Jr., Mark C. Preul and Robert F. Spetzler

Pineal region tumors are challenging to access because they are centrally located within the calvaria and surrounded by critical neurovascular structures. The goal of this work is to describe a new surgical trajectory, the anterior interhemispheric transsplenial approach, to the pineal region and falcotentorial junction area. To demonstrate this approach, the authors examined 7 adult formalin-fixed silicone-injected cadaveric heads and 2 fresh human brain specimens. One representative case of falcotentorial meningioma treated through an anterior interhemispheric transsplenial approach is also described. Among the interhemispheric approaches to the pineal region, the anterior interhemispheric transsplenial approach has several advantages. 1) There are few or no bridging veins at the level of the pericoronal suture. 2) The parietal and occipital lobes are not retracted, which reduces the chances of approach-related morbidity, especially in the dominant hemisphere. 3) The risk of damage to the deep venous structures is low because the tumor surface reached first is relatively vein free. 4) The internal cerebral veins can be manipulated and dissected away laterally through the anterior interhemispheric route but not via the posterior interhemispheric route. 5) Early control of medial posterior choroidal arteries is obtained. The anterior interhemispheric transsplenial approach provides a safe and effective surgical corridor for patients with supratentorial pineal region tumors that 1) extend superiorly, involve the splenium of the corpus callosum, and push the deep venous system in a posterosuperior or an anteroinferior direction; 2) are tentorial and displace the deep venous system inferiorly; or 3) originate from the splenium of the corpus callosum.

Full access

Kaan Yagmurlu, M. Yashar S. Kalani, Mark C. Preul and Robert F. Spetzler

The authors describe a safe entry zone, the superior fovea triangle, on the floor of the fourth ventricle for resection of deep dorsal pontine lesions at the level of the facial colliculus. Clinical data from a patient undergoing a suboccipital telovelar transsuperior fovea triangle approach to a deep pontine cavernous malformation were reviewed and supplemented with 6 formalin-fixed adult human brainstem and 2 silicone-injected adult human cadaveric heads using the fiber dissection technique to illustrate the utility of this novel safe entry zone. The superior fovea has a triangular shape that is an important landmark for the motor nucleus of the trigeminal, abducens, and facial nerves. The inferior half of the superior fovea triangle may be incised to remove deep dorsal pontine lesions through the floor of the fourth ventricle. The superior fovea triangle may be used as a safe entry zone for dorsally located lesions at the level of the facial colliculus.

Full access

M. Yashar S. Kalani, Kaan Yagmurlu, Nikolay L. Martirosyan, Daniel D. Cavalcanti and Robert F. Spetzler

Free access

Kaan Yagmurlu, Sam Safavi-Abbasi, Evgenii Belykh, M. Yashar S. Kalani, Peter Nakaji, Albert L. Rhoton Jr., Robert F. Spetzler and Mark C. Preul

OBJECTIVE

The aim of this investigation was to modify the mini-pterional and mini-orbitozygomatic (mini-OZ) approaches in order to reduce the amount of tissue traumatization caused and to compare the use of the 2 approaches in the removal of circle of Willis aneurysms based on the authors' clinical experience and quantitative analysis.

METHODS

Three formalin-fixed adult cadaveric heads injected with colored silicone were examined. Surgical freedom and angle of attack of the mini-pterional and mini-OZ approaches were measured at 9 anatomical points, and the measurements were compared. The authors also retrospectively reviewed the cases of 396 patients with ruptured and unruptured single aneurysms in the circle of Willis treated by microsurgical techniques at their institution between January 2006 and November 2014.

RESULTS

A significant difference in surgical freedom was found in favor of the mini-pterional approach for access to the ipsilateral internal carotid artery (ICA) and middle cerebral artery (MCA) bifurcations, the most distal point of the ipsilateral posterior cerebral artery (PCA), and the basilar artery (BA) tip. No statistically significant differences were found between the mini-pterional and mini-OZ approaches for access to the posterior clinoid process, the most distal point of the superior cerebellar artery (SCA), the anterior communicating artery (ACoA), the contralateral ICA bifurcation, and the most distal point of the contralateral MCA. A trend toward increasing surgical freedom was found for the mini-OZ approach to the ACoA and the contralateral ICA bifurcation. The lengths exposed through the mini-OZ approach were longer than those exposed by the mini-pterional approach for the ipsilateral PCA segment (11.5 ± 1.9 mm) between the BA and the most distal point of the P2 segment of the PCA, for the ipsilateral SCA (10.5 ± 1.1 mm) between the BA and the most distal point of the SCA, and for the contralateral anterior cerebral artery (ACA) (21 ± 6.1 mm) between the ICA bifurcation and the most distal point of the A2 segment of the ACA. The exposed length of the contralateral MCA (24.2 ± 8.6 mm) between the contralateral ICA bifurcation and the most distal point of the MCA segment was longer through the mini-pterional approach. The vertical angle of attack (anteroposterior direction) was significantly greater with the mini-pterional approach than with the mini-OZ approach, except in the ACoA and contralateral ICA bifurcation. The horizontal angle of attack (mediolateral direction) was similar with both approaches, except in the ACoA, contralateral ICA bifurcation, and contralateral MCA bifurcation, where the angle was significantly increased in the mini-OZ approach.

CONCLUSIONS

The mini-pterional and mini-OZ approaches, as currently performed in select patients, provide less tissue traumatization (i.e., less temporal muscle manipulation, less brain parenchyma retraction) from the skin to the aneurysm than standard approaches. Anatomical quantitative analysis showed that the mini-OZ approach provides better exposure to the contralateral side for controlling the contralateral parent arteries and multiple aneurysms. The mini-pterional approach has greater surgical freedom (maneuverability) for ipsilateral circle of Willis aneurysms.

Free access

João Luiz Vitorino Araujo, José C. E. Veiga, Hung Tzu Wen, Almir F. de Andrade, Manoel J. Teixeira, José P. Otoch, Albert L. Rhoton Jr., Mark C. Preul, Robert F. Spetzler and Eberval G. Figueiredo

OBJECTIVE

Access to the third ventricle is a veritable challenge to neurosurgeons. In this context, anatomical and morphometric studies are useful for establishing the limitations and advantages of a particular surgical approach. The transchoroidal approach is versatile and provides adequate exposure of the middle and posterior regions of the third ventricle. However, the fornix column limits the exposure of the anterior region of the third ventricle. There is evidence that the unilateral section of the fornix column has little effect on cognitive function. This study compared the anatomical exposure afforded by the transforniceal-transchoroidal approach with that of the transchoroidal approach. In addition, a morphometric evaluation of structures that are relevant to and common in the 2 approaches was performed.

METHODS

The anatomical exposure provided by the transcallosal-transchoroidal and transcallosal-transforniceal-transchoroidal approaches was compared in 8 fresh cadavers, using a neuronavigation system. The working area, microsurgical exposure area, and angular exposure on the longitudinal and transversal planes of 2 anatomical targets (tuber cinereum and cerebral aqueduct) were compared. Additionally, the thickness of the right frontal lobe parenchyma, thickness of the corpus callosum trunk, and longitudinal diameter of the interventricular foramen were measured. The values obtained were submitted to statistical analysis using the Wilcoxon test.

RESULTS

In the quantitative evaluation, compared with the transchoroidal approach, the transforniceal-transchoroidal approach provided a greater mean working area (transforniceal-transchoroidal 150 ± 11 mm2; transchoroidal 121 ± 8 mm2; p < 0.05), larger mean microsurgical exposure area (transforniceal-transchoroidal 101 ± 9 mm2; transchoroidal 80 ± 5 mm2; p < 0.05), larger mean angular exposure area on the longitudinal plane for the tuber cinereum (transforniceal-transchoroidal 71° ± 7°; transchoroidal 64° ± 6°; p < 0.05), and larger mean angular exposure area on the longitudinal plane for the cerebral aqueduct (transforniceal-transchoroidal 62° ± 6°; transchoroidal 55° ± 5°; p < 0.05). No differences were observed in angular exposure along the transverse axis for either anatomical target (tuber cinereum and cerebral aqueduct; p > 0.05). The mean thickness of the right frontal lobe parenchyma was 35 ± 3 mm, the mean thickness of the corpus callosum trunk was 10 ± 1 mm, and the mean longitudinal diameter of the interventricular foramen was 4.6 ± 0.4 mm. In the qualitative assessment, it was noted that the transforniceal-transchoroidal approach led to greater exposure of the third ventricle anterior region structures. There was no difference between approaches in the exposure of the structures of the middle and posterior region.

CONCLUSIONS

The transforniceal-transchoroidal approach provides greater surgical exposure of the third ventricle anterior region than that offered by the transchoroidal approach. In the population studied, morphometric analysis established mean values for anatomical structures common to both approaches.

Full access

João Luiz Vitorino Araujo, José C. E. Veiga, Hung Tzu Wen, Almir F. de Andrade, Manoel J. Teixeira, José P. Otoch, Albert L. Rhoton Jr., Mark C. Preul, Robert F. Spetzler and Eberval G. Figueiredo

OBJECTIVE

Access to the third ventricle is a veritable challenge to neurosurgeons. In this context, anatomical and morphometric studies are useful for establishing the limitations and advantages of a particular surgical approach. The transchoroidal approach is versatile and provides adequate exposure of the middle and posterior regions of the third ventricle. However, the fornix column limits the exposure of the anterior region of the third ventricle. There is evidence that the unilateral section of the fornix column has little effect on cognitive function. This study compared the anatomical exposure afforded by the transforniceal-transchoroidal approach with that of the transchoroidal approach. In addition, a morphometric evaluation of structures that are relevant to and common in the 2 approaches was performed.

METHODS

The anatomical exposure provided by the transcallosal-transchoroidal and transcallosal-transforniceal-transchoroidal approaches was compared in 8 fresh cadavers, using a neuronavigation system. The working area, microsurgical exposure area, and angular exposure on the longitudinal and transversal planes of 2 anatomical targets (tuber cinereum and cerebral aqueduct) were compared. Additionally, the thickness of the right frontal lobe parenchyma, thickness of the corpus callosum trunk, and longitudinal diameter of the interventricular foramen were measured. The values obtained were submitted to statistical analysis using the Wilcoxon test.

RESULTS

In the quantitative evaluation, compared with the transchoroidal approach, the transforniceal-transchoroidal approach provided a greater mean working area (transforniceal-transchoroidal 150 ± 11 mm2; transchoroidal 121 ± 8 mm2; p < 0.05), larger mean microsurgical exposure area (transforniceal-transchoroidal 101 ± 9 mm2; transchoroidal 80 ± 5 mm2; p < 0.05), larger mean angular exposure area on the longitudinal plane for the tuber cinereum (transforniceal-transchoroidal 71° ± 7°; transchoroidal 64° ± 6°; p < 0.05), and larger mean angular exposure area on the longitudinal plane for the cerebral aqueduct (transforniceal-transchoroidal 62° ± 6°; transchoroidal 55° ± 5°; p < 0.05). No differences were observed in angular exposure along the transverse axis for either anatomical target (tuber cinereum and cerebral aqueduct; p > 0.05). The mean thickness of the right frontal lobe parenchyma was 35 ± 3 mm, the mean thickness of the corpus callosum trunk was 10 ± 1 mm, and the mean longitudinal diameter of the interventricular foramen was 4.6 ± 0.4 mm. In the qualitative assessment, it was noted that the transforniceal-transchoroidal approach led to greater exposure of the third ventricle anterior region structures. There was no difference between approaches in the exposure of the structures of the middle and posterior region.

CONCLUSIONS

The transforniceal-transchoroidal approach provides greater surgical exposure of the third ventricle anterior region than that offered by the transchoroidal approach. In the population studied, morphometric analysis established mean values for anatomical structures common to both approaches.