Browse

You are looking at 1 - 5 of 5 items for :

  • Neurosurgical Focus x
  • By Author: Spetzler, Robert F. x
  • By Author: Theodore, Nicholas x
Clear All
Full access

Eric M. Horn, Nicholas Theodore, Rachid Assina, Robert F. Spetzler, Volker K. H. Sonntag and Mark C. Preul

Object

Venous stasis and intrathecal hypertension are believed to play a significant role in the hypoperfusion present in the spinal cord following injury. Lowering the intrathecal pressure via cerebrospinal fluid (CSF) drainage has been effective in treating spinal cord ischemia during aorta surgery. The purpose of the present study was to determine whether CSF drainage increases spinal cord perfusion and improves outcome after spinal injury in an animal model.

Methods

Anesthetized adult rabbits were subjected to a severe contusion spinal cord injury (SCI). Cerebrospinal fluid was then drained via a catheter to lower the intrathecal pressure by 10 mm Hg. Tissue perfusion was assessed at the site of injury, and values obtained before and after CSF drainage were compared. Two other cohorts of animals were subjected to SCI: 1 group subsequently underwent CSF drainage and the other did not. Results of histological analysis, motor evoked potential and motor function testing were compared between the 2 cohorts at 4 weeks postinjury.

Results

Cerebrospinal fluid drainage led to no significant improvement in spinal cord tissue perfusion. Four weeks after injury, the animals that underwent CSF drainage demonstrated significantly smaller areas of tissue damage at the injury site. There were no differences in motor evoked potentials or motor score outcomes at 4 weeks postinjury.

Conclusions

Cerebrospinal fluid drainage effectively lowers intrathecal pressure and decreases the amount of tissue damage in an animal model of spinal cord injury. Further studies are needed to determine whether different draining regimens can improve motor or electrophysiological outcomes.

Full access

Nicholas C. Bambakidis, John Butler, Eric M. Horn, Xukui Wang, Mark C. Preul, Nicholas Theodore, Robert F. Spetzler and Volker K. H. Sonntag

✓ The development of an acute traumatic spinal cord injury (SCI) inevitably leads to a complex cascade of ischemia and inflammation that results in significant scar tissue formation. The development of such scar tissue provides a severe impediment to neural regeneration and healing with restoration of function. A multimodal approach to treatment is required because SCIs occur with differing levels of severity and over different lengths of time. To achieve significant breakthroughs in outcomes, such approaches must combine both neuroprotective and neuroregenerative treatments. Novel techniques modulating endogenous stem cells demonstrate great promise in promoting neuroregeneration and restoring function.

Full access

Sam Safavi-Abbasi, Leonardo B. C. Brasiliense, Ryan K. Workman, Melanie C. Talley, Iman Feiz-Erfan, Nicholas Theodore, Robert F. Spetzler and Mark C. Preul

✓In 25 years, the Mongolian army of Genghis Khan conquered more of the known world than the Roman Empire accomplished in 400 years of conquest. The recent revised view is that Genghis Khan and his descendants brought about “pax Mongolica” by securing trade routes across Eurasia. After the initial shock of destruction by an unknown barbaric tribe, almost every country conquered by the Mongols was transformed by a rise in cultural communication, expanded trade, and advances in civilization. Medicine, including techniques related to surgery and neurological surgery, became one of the many areas of life and culture that the Mongolian Empire influenced.

Full access

Rudolf Ludwig Karl Virchow: pathologist, physician, anthropologist, and politician

Implications of his work for the understanding of cerebrovascular pathology and stroke

Sam Safavi-Abbasi, Cassius Reis, Melanie C. Talley, Nicholas Theodore, Peter Nakaji, Robert F. Spetzler and Mark C. Preul

✓ The history of apoplexy and descriptions of stroke symptoms date back to ancient times. It was not until the mid-nineteenth century, however, that the contributions of Rudolf Ludwig Karl Virchow, including his descriptions of the phenomena he called “embolism” and “thrombosis” as well as the origins of ischemia, changed the understanding of stroke. He suggested three main factors that conduce to venous thrombosis, which are now known as the Virchow triad. He also showed that portions of what he called a “thrombus” could detach and form an “embolus.” Thus, Virchow coined these terms to describe the pathogenesis of the disorder. It was also not until 1863 that Virchow recognized and differentiated almost all of the common types of intracranial malformations: telangiectatic venous malformations, arterial malformations, arteriovenous malformations, cystic angiomas (possibly what are now called hemangioblastomas), and transitional types of these lesions. This article is a review of the contributions of Rudolf Virchow to the current understanding of cerebrovascular pathology, and a summary of the life of this extraordinary personality in his many roles as physician, pathologist, anthropologist, ethnologist, and politician.