Browse

You are looking at 1 - 10 of 115 items for

  • By Author: Smith, Justin S. x
Clear All
Free access

Zoher Ghogawala, Shekar Kurpad, Asdrubal Falavigna, Michael W. Groff, Daniel M. Sciubba, Jau-Ching Wu, Paul Park, Sigurd Berven, Daniel J. Hoh, Erica F. Bisson, Michael P. Steinmetz, Marjorie C. Wang, Dean Chou, Charles A. Sansur, Justin S. Smith and Luis M. Tumialán

Restricted access

Thomas J. Buell, Ulas Yener, Tony R. Wang, Avery L. Buchholz, Chun-Po Yen, Mark E. Shaffrey, Christopher I. Shaffrey and Justin S. Smith

OBJECTIVE

Sacral insufficiency fracture after lumbosacral (LS) arthrodesis is an uncommon complication. The objective of this study was to report the authors’ operative experience managing this complication, review pertinent literature, and propose a treatment algorithm.

METHODS

The authors analyzed consecutive adult patients treated at their institution from 2009 to 2018. Patients who underwent surgery for sacral insufficiency fractures after posterior instrumented LS arthrodesis were included. PubMed was queried to identify relevant articles detailing management of this complication.

RESULTS

Nine patients with a minimum 6-month follow-up were included (mean age 73 ± 6 years, BMI 30 ± 6 kg/m2, 56% women, mean follow-up 35 months, range 8–96 months). Six patients had osteopenia/osteoporosis (mean dual energy x-ray absorptiometry hip T-score −1.6 ± 0.5) and 3 received treatment. Index LS arthrodesis was performed for spinal stenosis (n = 6), proximal junctional kyphosis (n = 2), degenerative scoliosis (n = 1), and high-grade spondylolisthesis (n = 1). Presenting symptoms of back/leg pain (n = 9) or lower extremity weakness (n = 3) most commonly occurred within 4 weeks of index LS arthrodesis, which prompted CT for fracture diagnosis at a mean of 6 weeks postoperatively. All sacral fractures were adjacent or involved S1 screws and traversed the spinal canal (Denis zone III). H-, U-, or T-type sacral fracture morphology was identified in 7 patients. Most fractures (n = 8) were Roy-Camille type II (anterior displacement with kyphosis). All patients underwent lumbopelvic fixation via a posterior-only approach; mean operative duration and blood loss were 3.3 hours and 850 ml, respectively. Bilateral dual iliac screws were utilized in 8 patients. Back/leg pain and weakness improved postoperatively. Mean sacral fracture anterolisthesis and kyphotic angulation improved (from 8 mm/11° to 4 mm/5°, respectively) and all fractures were healed on radiographic follow-up (mean duration 29 months, range 8–90 months). Two patients underwent revision for rod fractures at 1 and 2 years postoperatively. A literature review found 17 studies describing 87 cases; potential risk factors were osteoporosis, longer fusions, high pelvic incidence (PI), and postoperative PI-to–lumbar lordosis (LL) mismatch.

CONCLUSIONS

A high index of suspicion is needed to diagnose sacral insufficiency fracture after LS arthrodesis. A trial of conservative management is reasonable for select patients; potential surgical indications include refractory pain, neurological deficit, fracture nonunion with anterolisthesis or kyphotic angulation, L5–S1 pseudarthrosis, and spinopelvic malalignment. Lumbopelvic fixation with iliac screws may be effective salvage treatment to allow fracture healing and symptom improvement. High-risk patients may benefit from prophylactic lumbopelvic fixation at the time of index LS arthrodesis.

Open access

Rebecca M. Burke, Thomas J. Buell, Dominic M. Maggio, Ulas Yener, Chun-Po Yen, Christopher I. Shaffrey and Justin S. Smith

Adolescent idiopathic scoliosis patients treated with spinal fusion may develop adjacent segment disease and curve progression into adulthood. Revision operations can be challenging, especially for adult patients treated with outdated instrumentation such as sublaminar hooks and/or wires. The authors demonstrate revision lumbar spine surgery in a 38-year-old female with scoliosis progression from junctional degeneration below a prior T5–L3 posterior instrumented arthrodesis with a hook-and-rod wire system. They also demonstrate safe application of an ultrasonic bone scalpel for completion of a Smith-Petersen osteotomy. The patient provided written, informed consent for all material presented in this case demonstration.

The video can be found here: https://youtu.be/3PmaFtNcqKc.

Open access

Justin S. Smith, Christopher I. Shaffrey, Michael Wang, Mohamad Bydon and Lawrence Lenke

Open access

Alexandria C. Marino, Thomas J. Buell, Rebecca M. Burke, Tony R. Wang, Chun-Po Yen, Christopher I. Shaffrey and Justin S. Smith

Three-column osteotomies (3COs) can achieve significant alignment correction when revising fixed sagittal plane deformities; however, the technique is associated with high complication rates. The authors demonstrate staged anterior-posterior surgery with L5–S1 ALIF (below a prior L3–5 fusion) and multilevel Smith-Petersen osteotomies to circumvent the morbidity associated with 3CO. The patient was a 67-year-old male with three prior lumbar surgeries who presented with back and leg pain. Imaging demonstrated lumbar flat back deformity and sagittal imbalance. The narrated video details key radiological measurements, operative planning and rationale, surgical steps, and outcomes. The patient provided written, informed consent for publication of this illustrative case.

The video can be found here: https://youtu.be/wv4W9D9fUPc.

Restricted access

Alan H. Daniels, Daniel B. C. Reid, Wesley M. Durand, D. Kojo Hamilton, Peter G. Passias, Han Jo Kim, Themistocles S. Protopsaltis, Virginie Lafage, Justin S. Smith, Christopher I. Shaffrey, Munish Gupta, Eric Klineberg, Frank Schwab, Douglas Burton, Shay Bess, Christopher P. Ames, Robert A. Hart and the International Spine Study Group

OBJECTIVE

Optimal patient selection for upper-thoracic (UT) versus lower-thoracic (LT) fusion during adult spinal deformity (ASD) correction is challenging. Radiographic and clinical outcomes following UT versus LT fusion remain incompletely understood. The purposes of this study were: 1) to evaluate demographic, radiographic, and surgical characteristics associated with choice of UT versus LT fusion endpoint; and 2) to evaluate differences in radiographic, clinical, and health-related quality of life (HRQOL) outcomes following UT versus LT fusion for ASD.

METHODS

Retrospective review of a prospectively collected multicenter ASD database was performed. Patients with ASD who underwent fusion from the sacrum/ilium to the LT (T9–L1) or UT (T1–6) spine were compared for demographic, radiographic, and surgical characteristics. Outcomes including proximal junctional kyphosis (PJK), reoperation, rod fracture, pseudarthrosis, overall complications, 2-year change in alignment parameters, and 2-year HRQOL metrics (Lumbar Stiffness Disability Index, Scoliosis Research Society-22r questionnaire, Oswestry Disability Index) were compared after controlling for confounding factors via multivariate analysis.

RESULTS

Three hundred three patients (169 LT, 134 UT) were evaluated. Independent predictors of UT fusion included greater thoracic kyphosis (odds ratio [OR] 0.97 per degree, p = 0.0098), greater coronal Cobb angle (OR 1.06 per degree, p < 0.0001), and performance of a 3-column osteotomy (3-CO; OR 2.39, p = 0.0351). While associated with longer operative times (ratio 1.13, p < 0.0001) and greater estimated blood loss (ratio 1.31, p = 0.0018), UT fusions resulted in greater sagittal vertical axis improvement (−59.5 vs −41.0 mm, p = 0.0035) and lower PJK rates (OR 0.49, p = 0.0457). No significant differences in postoperative HRQOL measures, reoperation, or overall complication rates were detected between groups (all p > 0.1).

CONCLUSIONS

Greater deformity and need for 3-CO increased the likelihood of UT fusion. Despite longer operative times and greater blood loss, UT fusions resulted in better sagittal correction and lower 2-year PJK rates following surgery for ASD. While continued surveillance is necessary, this information may inform patient counseling and surgical decision-making.

Restricted access

Dana L. Cruz, Ethan W. Ayres, Matthew A. Spiegel, Louis M. Day, Robert A. Hart, Christopher P. Ames, Douglas C. Burton, Justin S. Smith, Christopher I. Shaffrey, Frank J. Schwab, Thomas J. Errico, Shay Bess, Virginie Lafage and Themistocles S. Protopsaltis

OBJECTIVE

Neck and back pain are highly prevalent conditions that account for major disability. The Neck Disability Index (NDI) and Oswestry Disability Index (ODI) are the two most common functional status measures for neck and back pain. However, no single instrument exists to evaluate patients with concurrent neck and back pain. The recently developed Total Disability Index (TDI) combines overlapping elements from the ODI and NDI with the unique items from each. This study aimed to prospectively validate the TDI in patients with spinal deformity, back pain, and/or neck pain.

METHODS

This study is a retrospective review of prospectively collected data from a single center. The 14-item TDI, derived from ODI and NDI domains, was administered to consecutive patients presenting to a spine practice. Patients were assessed using the ODI, NDI, and EQ-5D. Validation of internal consistency, test-retest reproducibility, and validity of reconstructed NDI and ODI scores derived from TDI were assessed.

RESULTS

A total of 252 patients (mean age 55 years, 56% female) completed initial assessments (back pain, n = 115; neck pain, n = 52; back and neck pain, n = 55; spinal deformity, n = 55; and no pain/deformity, n = 29). Of these patients, 155 completed retests within 14 days. Patients represented a wide range of disability (mean ODI score: 36.3 ± 21.6; NDI score: 30.8 ± 21.8; and TDI score: 34.1 ± 20.0). TDI demonstrated excellent internal consistency (Cronbach’s alpha = 0.922) and test-retest reliability (intraclass correlation coefficient = 0.96). Differences between actual and reconstructed scores were not clinically significant. Subanalyses demonstrated TDI’s ability to quantify the degree of disability due to back or neck pain in patients complaining of pain in both regions.

CONCLUSIONS

The TDI is a valid and reliable disability measure in patients with back and/or neck pain and can capture each spine region’s contribution to total disability. The TDI could be a valuable method for total spine assessment in a clinical setting, and its completion is less time consuming than that for both the ODI and NDI.

Restricted access

Han Jo Kim, Sohrab Virk, Jonathan Elysee, Peter Passias, Christopher Ames, Christopher I. Shaffrey, Gregory Mundis Jr., Themistocles Protopsaltis, Munish Gupta, Eric Klineberg, Justin S. Smith, Douglas Burton, Frank Schwab, Virginie Lafage, Renaud Lafage and the International Spine Study Group

OBJECTIVE

Cervical deformity (CD) is difficult to define due to the high variability in normal cervical alignment based on postural- and thoracolumbar-driven changes to cervical alignment. The purpose of this study was to identify whether patterns of sagittal deformity could be established based on neutral and dynamic alignment, as shown on radiographs.

METHODS

This study is a retrospective review of a prospective, multicenter database of CD patients who underwent surgery from 2013 to 2015. Their radiographs were reviewed by 12 individuals using a consensus-based method to identify severe sagittal CD. Radiographic parameters correlating with health-related quality of life were introduced in a two-step cluster analysis (a combination of hierarchical cluster and k-means cluster) to identify patterns of sagittal deformity. A comparison of lateral and lateral extension radiographs between clusters was performed using an ANOVA in a post hoc analysis.

RESULTS

Overall, 75 patients were identified as having severe CD due to sagittal malalignment, and they formed the basis of this study. Their mean age was 64 years, their body mass index was 29 kg/m2, and 66% were female. There were significant correlations between focal alignment/flexibility of maximum kyphosis, cervical lordosis, and thoracic slope minus cervical lordosis (TS-CL) flexibility (r = 0.27, 0.31, and −0.36, respectively). Cluster analysis revealed 3 distinct groups based on alignment and flexibility. Group 1 (a pattern involving a flat neck with lack of compensation) had a large TS-CL mismatch despite flexibility in cervical lordosis; group 2 (a pattern involving focal deformity) had focal kyphosis between 2 adjacent levels but no large regional cervical kyphosis under the setting of a low T1 slope (T1S); and group 3 (a pattern involving a cervicothoracic deformity) had a very large T1S with a compensatory hyperlordosis of the cervical spine.

CONCLUSIONS

Three distinct patterns of CD were identified in this cohort: flat neck, focal deformity, and cervicothoracic deformity. One key element to understanding the difference between these groups was the alignment seen on extension radiographs. This information is a first step in developing a classification system that can guide the surgical treatment for CD and the choice of fusion level.

Free access

Samantha R. Horn, Peter G. Passias, Cheongeun Oh, Virginie Lafage, Renaud Lafage, Justin S. Smith, Breton Line, Neel Anand, Frank A. Segreto, Cole A. Bortz, Justin K. Scheer, Robert K. Eastlack, Vedat Deviren, Praveen V. Mummaneni, Alan H. Daniels, Paul Park, Pierce D. Nunley, Han Jo Kim, Eric O. Klineberg, Douglas C. Burton, Robert A. Hart, Frank J. Schwab, Shay Bess, Christopher I. Shaffrey, Christopher P. Ames and the International Spine Study Group

OBJECTIVE

Cervical deformity (CD) correction is clinically challenging. There is a high risk of developing complications with these highly complex procedures. The aim of this study was to use baseline demographic, clinical, and surgical factors to predict a poor outcome following CD surgery.

METHODS

The authors performed a retrospective review of a multicenter prospective CD database. CD was defined as at least one of the following: cervical kyphosis (C2–7 Cobb angle > 10°), cervical scoliosis (coronal Cobb angle > 10°), C2–7 sagittal vertical axis (cSVA) > 4 cm, or chin-brow vertical angle (CBVA) > 25°. Patients were categorized based on having an overall poor outcome or not. Health-related quality of life measures consisted of Neck Disability Index (NDI), EQ-5D, and modified Japanese Orthopaedic Association (mJOA) scale scores. A poor outcome was defined as having all 3 of the following categories met: 1) radiographic poor outcome: deterioration or severe radiographic malalignment 1 year postoperatively for cSVA or T1 slope–cervical lordosis mismatch (TS-CL); 2) clinical poor outcome: failing to meet the minimum clinically important difference (MCID) for NDI or having a severe mJOA Ames modifier; and 3) complications/reoperation poor outcome: major complication, death, or reoperation for a complication other than infection. Univariate logistic regression followed by multivariate regression models was performed, and internal validation was performed by calculating the area under the curve (AUC).

RESULTS

In total, 89 patients with CD were included (mean age 61.9 years, female sex 65.2%, BMI 29.2 kg/m2). By 1 year postoperatively, 18 (20.2%) patients were characterized as having an overall poor outcome. For radiographic poor outcomes, patients’ conditions either deteriorated or remained severe for TS-CL (73% of patients), cSVA (8%), horizontal gaze (34%), and global SVA (28%). For clinical poor outcomes, 80% and 60% of patients did not reach MCID for EQ-5D and NDI, respectively, and 24% of patients had severe symptoms (mJOA score 0–11). For the complications/reoperation poor outcome, 28 patients experienced a major complication, 11 underwent a reoperation, and 1 had a complication-related death. Of patients with a poor clinical outcome, 75% had a poor radiographic outcome; 35% of poor radiographic and 37% of poor clinical outcome patients had a major complication. A poor outcome was predicted by the following combination of factors: osteoporosis, baseline neurological status, use of a transition rod, number of posterior decompressions, baseline pelvic tilt, T2–12 kyphosis, TS-CL, C2–T3 SVA, C2–T1 pelvic angle (C2 slope), global SVA, and number of levels in maximum thoracic kyphosis. The final model predicting a poor outcome (AUC 86%) included the following: osteoporosis (OR 5.9, 95% CI 0.9–39), worse baseline neurological status (OR 11.4, 95% CI 1.8–70.8), baseline pelvic tilt > 20° (OR 0.92, 95% CI 0.85–0.98), > 9 levels in maximum thoracic kyphosis (OR 2.01, 95% CI 1.1–4.1), preoperative C2–T3 SVA > 5.4 cm (OR 1.01, 95% CI 0.9–1.1), and global SVA > 4 cm (OR 3.2, 95% CI 0.09–10.3).

CONCLUSIONS

Of all CD patients in this study, 20.2% had a poor overall outcome, defined by deterioration in radiographic and clinical outcomes, and a major complication. Additionally, 75% of patients with a poor clinical outcome also had a poor radiographic outcome. A poor overall outcome was most strongly predicted by severe baseline neurological deficit, global SVA > 4 cm, and including more of the thoracic maximal kyphosis in the construct.

Restricted access

Nitin Agarwal, Federico Angriman, Ezequiel Goldschmidt, James Zhou, Adam S. Kanter, David O. Okonkwo, Peter G. Passias, Themistocles Protopsaltis, Virginie Lafage, Renaud Lafage, Frank Schwab, Shay Bess, Christopher Ames, Justin S. Smith, Christopher I. Shaffrey, Douglas Burton, D. Kojo Hamilton and the International Spine Study Group

OBJECTIVE

Obesity, a condition that is increasing in prevalence in the United States, has previously been associated with poorer outcomes following deformity surgery, including higher rates of perioperative complications such as deep and superficial infections. To date, however, no study has examined the relationship between preoperative BMI and outcomes of deformity surgery as measured by spine parameters such as the sagittal vertical axis (SVA), as well as health-related quality of life (HRQoL) measures such as the Oswestry Disability Index (ODI) and Scoliosis Research Society–22 patient questionnaire (SRS-22). To this end, the authors sought to clarify the relationship between BMI and postoperative change in SVA as well as HRQoL outcomes.

METHODS

The authors performed a retrospective review of a prospectively managed multicenter adult spinal deformity database collected and maintained by the International Spine Study Group (ISSG) between 2009 and 2014. The primary independent variable considered was preoperative BMI. The primary outcome was the change in SVA at 1 year after deformity surgery. Postoperative ODI and SRS-22 outcome measures were evaluated as secondary outcomes. Generalized linear models were used to model the primary and secondary outcomes at 1 year as a function of BMI at baseline, while adjusting for potential measured confounders.

RESULTS

Increasing BMI (compared to BMI < 18) was not associated with change of SVA at 1 year postsurgery. However, BMIs in the obese range of 30 to 34.9 kg/m2, compared to BMI < 18 at baseline, were associated with poorer outcomes as measured by the SRS-22 score (estimated change −0.47, 95% CI −0.93 to −0.01, p = 0.04). While BMIs > 30 appeared to be associated with poorer outcomes as determined by the ODI, this correlation did not reach statistical significance.

CONCLUSIONS

Baseline BMI did not affect the achievable SVA at 1 year postsurgery. Further studies should evaluate whether even in the absence of a change in SVA, baseline BMIs in the obese range are associated with worsened HRQoL outcomes after spinal surgery.