Browse

You are looking at 51 - 60 of 133 items for

  • By Author: Sheehan, Jason P. x
Clear All Modify Search
Full access

Robert M. Starke, Colin J. Przybylowski, Mukherjee Sugoto, Francis Fezeu, Ahmed J. Awad, Dale Ding, James H. Nguyen and Jason P. Sheehan

OBJECT

Stereotactic radiosurgery (SRS) has become a common treatment modality for intracranial meningiomas. Skull base meningiomas greater than 8 cm3 in volume have been found to have worse outcomes following SRS. When symptomatic, patients with these tumors are often initially treated with resection. For tumors located in close proximity to eloquent structures or in patients unwilling or unable to undergo a resection, SRS may be an acceptable therapeutic approach. In this study, the authors review the SRS outcomes of skull base meningiomas greater than 8 cm3 in volume, which corresponds to a lesion with an approximate diameter of 2.5 cm.

METHODS

The authors reviewed the data in a prospectively compiled database documenting the outcomes of 469 patients with skull base meningiomas treated with single-session Gamma Knife radiosurgery (GKRS). Seventy-five patients had tumors greater than 8 cm3 in volume, which was defined as a large tumor. All patients had a minimum follow-up of 6 months, but patients were included if they had a complication at any time point. Thirty patients were treated with upfront GKRS, and 45 were treated following microsurgery. Patient and tumor characteristics were assessed to determine predictors of new or worsening neurological function and tumor progression following GKRS.

RESULTS

After a mean follow-up of 6.5 years (range 0.5–21 years), the tumor volume was unchanged in 37 patients (49%), decreased in 26 patients (35%), and increased in 12 patients (16%). Actuarial rates of progression-free survival at 3, 5, and 10 years were 90.3%, 88.6%, and 77.2%, respectively. Four patients had new or worsened edema following GKRS, but preexisting edema decreased in 3 patients. In Cox multivariable analysis, covariates associated with tumor progression were 1) presentation with any cranial nerve (CN) deficit from III to VI (hazard ratio [HR] 3.78, 95% CI 1.91–7.45; p < 0.001), history of radiotherapy (HR 12.06, 95% CI 2.04–71.27; p = 0.006), and tumor volume greater than 14 cm3 (HR 6.86, 95% CI 0.88–53.36; p = 0.066). In those patients with detailed clinical follow-up (n = 64), neurological function was unchanged in 37 patients (58%), improved in 16 patients (25%), and deteriorated in 11 patients (17%). In multivariate analysis, the factors predictive of new or worsening neurological function were history of surgery (OR 3.00, 95% CI 1.13–7.95; p = 0.027), presentation with any CN deficit from III to VI (OR 3.94, 95% CI 1.49–10.24; p = 0.007), and decreasing maximal dose (OR 0.76, 95% CI 0.63–0.93; p = 0.007). Tumor progression was present in 64% of patients with new or worsening neurological decline.

CONCLUSIONS

Stereotactic radiosurgery affords a reasonable rate of tumor control for large skull base meningiomas and does so with a low incidence of neurological deficits. Those with a tumor less than 14 cm3 in volume and without presenting CN deficit from III to VI were more likely to have effective tumor control.

Full access

Ching-Jen Chen, Cheng-Chia Lee, Dale Ding, Robert M. Starke, Srinivas Chivukula, Chun-Po Yen, Shayan Moosa, Zhiyuan Xu, David Hung-Chi Pan and Jason P. Sheehan

OBJECT

The goal of this study was to evaluate the obliteration rate of intracranial dural arteriovenous fistulas (DAVFs) in patients treated with stereotactic radiosurgery (SRS), and to compare obliteration rates between cavernous sinus (CS) and noncavernous sinus (NCS) DAVFs, and between DAVFs with and without cortical venous drainage (CVD).

METHODS

A systematic literature review was performed using PubMed. The CS DAVFs and the NCS DAVFs were categorized using the Barrow and Borden classification systems, respectively. The DAVFs were also categorized by location and by the presence of CVD. Statistical analyses of pooled data were conducted to assess complete obliteration rates in CS and NCS DAVFs, and in DAVFs with and without CVD.

RESULTS

Nineteen studies were included, comprising 729 patients harboring 743 DAVFs treated with SRS. The mean obliteration rate was 63% (95% CI 52.4%–73.6%). Complete obliteration for CS and NCS DAVFs was achieved in 73% and 58% of patients, respectively. No significant difference in obliteration rates between CS and NCS DAVFs was found (OR 1.72, 95% CI 0.66–4.46; p = 0.27). Complete obliteration in DAVFs with and without CVD was observed in 56% and 75% of patients, respectively. A significantly higher obliteration rate was observed in DAVFs without CVD compared with DAVFs with CVD (OR 2.37, 95% CI 1.07–5.28; p = 0.03).

CONCLUSIONS

Treatment with SRS offers favorable rates of DAVF obliteration with low complication rates. Patients harboring DAVFs that are refractory or not amenable to endovascular or surgical therapy may be safely and effectively treated using SRS.

Free access

Jason P. Sheehan

Free access

Mohamed Samy Elhammady and Roberto C. Heros

Free access

Ching-Jen Chen, Srinivas Chivukula, Dale Ding, Robert M. Starke, Cheng-Chia Lee, Chun-Po Yen, Zhiyuan Xu and Jason P. Sheehan

Object

Seizures are a common presentation of cerebral arteriovenous malformations (AVMs). The authors evaluated the efficacy of stereotactic radiosurgery (SRS) for the management of seizures associated with AVMs and identified factors influencing seizure outcomes following SRS for AVMs.

Methods

A systematic literature review was performed using PubMed. Studies selected for review were published in English, included at least 5 patients with both cerebral AVMs and presenting seizures treated with SRS, and provided post-SRS outcome data regarding obliteration of AVMs and/or seizures. Demographic, radiosurgical, radiological, and seizure outcome data were extracted and analyzed. All seizure outcomes were categorized as follows: 1) seizure free, 2) seizure improvement, 3) seizure unchanged, and 4) seizure worsened. Systematic statistical analysis was conducted to assess the effect of post-SRS AVM obliteration on seizure outcome.

Results

Nineteen case series with a total of 3971 AVM patients were included for analysis. Of these, 28% of patients presented with seizures, and data for 997 patients with available seizure outcome data who met the inclusion criteria were evaluated. Of these, 437 (43.8%) patients achieved seizure-free status after SRS, and 530 (68.7%) of 771 patients with available data achieved seizure control (seizure freedom or seizure improvement) following SRS. Factors associated with improved seizure outcomes following SRS for AVMs were analyzed in 9 studies. Seizure-free status was achieved in 82% and 41.0% of patients with complete and incomplete AVM obliteration, respectively. Complete AVM obliteration offered superior seizure-free rates compared with incomplete AVM obliteration (OR 6.13; 95% CI 2.16–17.44; p = 0.0007).

Conclusions

Stereotactic radiosurgery offers favorable seizure outcomes for AVM patients presenting with seizures. Improved seizure control is significantly more likely with complete AVM obliteration.

Free access

Shayan Moosa, Ching-Jen Chen, Dale Ding, Cheng-Chia Lee, Srinivas Chivukula, Robert M. Starke, Chun-Po Yen, Zhiyuan Xu and Jason P. Sheehan

Object

The aim in this paper was to compare the outcomes of dose-staged and volume-staged stereotactic radio-surgery (SRS) in the treatment of large (> 10 cm3) arteriovenous malformations (AVMs).

Methods

A systematic literature review was performed using PubMed. Studies written in the English language with at least 5 patients harboring large (> 10 cm3) AVMs treated with dose- or volume-staged SRS that reported post-treatment outcomes data were selected for review. Demographic information, radiosurgical treatment parameters, and post-SRS outcomes and complications were analyzed for each of these studies.

Results

The mean complete obliteration rates for the dose- and volume-staged groups were 22.8% and 47.5%, respectively. Complete obliteration was demonstrated in 30 of 161 (18.6%) and 59 of 120 (49.2%) patients in the dose- and volume-staged groups, respectively. The mean rates of symptomatic radiation-induced changes were 13.5% and 13.6% in dose- and volume-staged groups, respectively. The mean rates of cumulative post-SRS latency period hemorrhage were 12.3% and 17.8% in the dose- and volume-staged groups, respectively. The mean rates of post-SRS mortality were 3.2% and 4.6% in dose- and volume-staged groups, respectively.

Conclusions

Volume-staged SRS affords higher obliteration rates and similar complication rates compared with dose-staged SRS. Thus, volume-staged SRS may be a superior approach for large AVMs that are not amenable to single-session SRS. Staged radiosurgery should be considered as an efficacious component of multimodality AVM management.

Full access

Dale Ding, Chun-Po Yen, Zhiyuan Xu, Robert M. Starke and Jason P. Sheehan

Object

Low-grade, or Spetzler-Martin (SM) Grades I and II, arteriovenous malformations (AVMs) are associated with lower surgical morbidity rates than higher-grade lesions. While radiosurgery is now widely accepted as an effective treatment approach for AVMs, the risks and benefits of the procedure for low-grade AVMs, as compared with microsurgery, remain poorly understood. The authors of this study present the outcomes for a large cohort of low-grade AVMs treated with radiosurgery.

Methods

From an institutional radiosurgery database comprising approximately 1450 AVM cases, all patients with SM Grade I and II lesions were identified. Patients with less than 2 years of radiological follow-up, except those with complete AVM obliteration, were excluded from analysis. Univariate and multivariate Cox proportional-hazards and logistic regression analyses were used to determine factors associated with obliteration, radiation-induced changes (RICs), and hemorrhage following radiosurgery.

Results

Five hundred two patients harboring low-grade AVMs were eligible for analysis. The median age was 35 years, 50% of patients were male, and the most common presentation was hemorrhage (47%). The median AVM volume and prescription dose were 2.4 cm3 and 23 Gy, respectively. The median radiological and clinical follow-up intervals were 48 and 62 months, respectively. The cumulative obliteration rate was 76%. The median time to obliteration was 40 months, and the actuarial obliteration rates were 66% and 80% at 5 and 10 years, respectively. Independent predictors of obliteration were no preradiosurgery embolization (p < 0.001), decreased AVM volume (p = 0.005), single draining vein (p = 0.013), lower radiosurgery-based AVM scale score (p = 0.016), and lower Virginia Radiosurgery AVM Scale (Virginia RAS) score (p = 0.001). The annual postradiosurgery hemorrhage rate was 1.4% with increased AVM volume (p = 0.034) and lower prescription dose (p = 0.006) as independent predictors. Symptomatic and permanent RICs were observed in 8.2% and 1.4% of patients, respectively. No preradiosurgery hemorrhage (p = 0.011), a decreased prescription dose (p = 0.038), and a higher Virginia RAS score (p = 0.001) were independently associated with postradiosurgery RICs.

Conclusions

Spetzler-Martin Grade I and II AVMs are very amenable to successful treatment with stereotactic radiosurgery. While patient, physician, and institutional preferences frequently dictate the final course of treatment, radiosurgery offers a favorable risk-to-benefit profile for the management of low-grade AVMs.

Full access

Dale Ding, Chun-Po Yen, Robert M. Starke, Zhiyuan Xu and Jason P. Sheehan

Object

Ruptured intracranial arteriovenous malformations (AVMs) are at a significantly greater risk for future hemorrhage than unruptured lesions, thereby necessitating treatment in the majority of cases. In a retrospective, single-center study, the authors describe the outcomes after radiosurgery in a large cohort of patients with ruptured AVMs.

Methods

From an institutional review board–approved, prospectively collected AVM radiosurgery database, the authors identified all patients with a history of AVM rupture. They analyzed obliteration rates in all patients in whom radiological follow-up data were available (n = 639). However, to account for the latency period associated with radiosurgery, only those patients with more than 2 years of radiological follow-up and those with earlier AMV obliteration were included in the analysis of prognostic factors related to obliteration and complications. This resulted in a cohort of 565 patients with ruptured AVMs for whom data were analyzed; these patients had a median radiological follow-up of 57 months and a median age of 29 years. Twenty-one percent of the patients underwent preradiosurgery embolization. The median volume and prescription dose were 2.1 cm3 and 22 Gy, respectively. The Spetzler-Martin grade was III or higher in 56% of patients, the median radiosurgery-based AVM score was 1.08, and the Virginia Radiosurgery AVM Scale (RAS) score was 3 to 4 points in 44%. Survival and regression analyses were performed to determine obliteration rates over time and predictors of obliteration and complications.

Results

In the overall population of 639 patients with ruptured AVMs, the obliteration rate was 11.1% based on MRI only (71 of 639 patients), 56.0% based on angiography (358 of 639), and 67.1% based on combined modalities (429 of 639 patients). In the cohort of patients with 2 years of follow-up or an earlier AVM obliteration, the cumulative obliteration rate was 76% and the actuarial obliteration rates were 41% and 64% at 3 and 5 years, respectively. Multivariate analysis identified the absence of preradiosurgery embolization (p < 0.001), increased prescription dose (p = 0.001), the presence of a single draining vein (p = 0.046), no postradiosurgery-related hemorrhage (p = 0.007), and lower Virginia RAS score (p = 0.020) as independent predictors of obliteration. The annual risk of a hemorrhage occurring during the latency period was 2.0% and the rate of hemorrhage-related morbidity and mortality was 1.6%. Multivariate analysis showed that decreased prescription dose (p < 0.001) and multiple draining veins (p = 0.003) were independent predictors of postradiosurgery hemorrhage. The rates of symptomatic and permanent radiation-induced changes were 8% and 2.7%, respectively. In the multivariate analysis, a single draining vein (p < 0.001) and higher Virginia RAS score (p = 0.005) were independent predictors of radiation-induced changes following radiosurgery.

Conclusions

Radiosurgery effectively treats ruptured AVMs with an acceptably low risk-to-benefit ratio. For patients with ruptured AVMs, favorable outcomes are more likely when preradiosurgical embolization is avoided and a higher prescription dose can be delivered.

Full access

Jason P. Sheehan, Robert M. Starke, Hideyuki Kano, Anthony M. Kaufmann, David Mathieu, Fred A. Zeiler, Michael West, Samuel T. Chao, Gandhi Varma, Veronica L. S. Chiang, James B. Yu, Heyoung L. McBride, Peter Nakaji, Emad Youssef, Norissa Honea, Stephen Rush, Douglas Kondziolka, John Y. K. Lee, Robert L. Bailey, Sandeep Kunwar, Paula Petti and L. Dade Lunsford

Object

Parasellar and sellar meningiomas are challenging tumors owing in part to their proximity to important neurovascular and endocrine structures. Complete resection can be associated with significant morbidity, and incomplete resections are common. In this study, the authors evaluated the outcomes of parasellar and sellar meningiomas managed with Gamma Knife radiosurgery (GKRS) both as an adjunct to microsurgical removal or conventional radiation therapy and as a primary treatment modality.

Methods

A multicenter study of patients with benign sellar and parasellar meningiomas was conducted through the North American Gamma Knife Consortium. For the period spanning 1988 to 2011 at 10 centers, the authors identified all patients with sellar and/or parasellar meningiomas treated with GKRS. Patients were also required to have a minimum of 6 months of imaging and clinical follow-up after GKRS. Factors predictive of new neurological deficits following GKRS were assessed via univariate and multivariate analyses. Kaplan-Meier analysis and Cox multivariate regression analysis were used to assess factors predictive of tumor progression.

Results

The authors identified 763 patients with sellar and/or parasellar meningiomas treated with GKRS. Patients were assessed clinically and with neuroimaging at routine intervals following GKRS. There were 567 females (74.3%) and 196 males (25.7%) with a median age of 56 years (range 8–90 years). Three hundred fifty-five patients (50.7%) had undergone at least one resection before GKRS, and 3.8% had undergone prior radiation therapy. The median follow-up after GKRS was 66.7 months (range 6–216 months). At the last follow-up, tumor volumes remained stable or decreased in 90.2% of patients. Actuarial progression-free survival rates at 3, 5, 8, and 10 years were 98%, 95%, 88%, and 82%, respectively. More than one prior surgery, prior radiation therapy, or a tumor margin dose < 13 Gy significantly increased the likelihood of tumor progression after GKRS.

At the last clinical follow-up, 86.2% of patients demonstrated no change or improvement in their neurological condition, whereas 13.8% of patients experienced symptom progression. New or worsening cranial nerve deficits were seen in 9.6% of patients, with cranial nerve (CN) V being the most adversely affected nerve. Functional improvements in CNs, especially in CNs V and VI, were observed in 34% of patients with preexisting deficits. New or worsened endocrinopathies were demonstrated in 1.6% of patients; hypothyroidism was the most frequent deficiency. Unfavorable outcome with tumor growth and accompanying neurological decline was statistically more likely in patients with larger tumor volumes (p = 0.022) and more than 1 prior surgery (p = 0.021).

Conclusions

Gamma Knife radiosurgery provides a high rate of tumor control for patients with parasellar or sellar meningiomas, and tumor control is accompanied by neurological preservation or improvement in most patients.