Browse

You are looking at 1 - 10 of 33 items for

  • By Author: Safavi-Abbasi, Sam x
Clear All
Restricted access

Evgenii Belykh, Kaan Yağmurlu, Ting Lei, Sam Safavi-Abbasi, Mark E. Oppenlander, Nikolay L. Martirosyan, Vadim A. Byvaltsev, Robert F. Spetzler, Peter Nakaji and Mark C. Preul

OBJECTIVE

The best approach to deep-seated lateral and third ventricle lesions is a function of lesion characteristics, location, and relationship to the ventricles. The authors sought to examine and compare angles of attack and surgical freedom of anterior ipsilateral and contralateral interhemispheric transcallosal approaches to the frontal horn of the lateral ventricle using human cadaveric head dissections. Illustrative clinical experiences with a contralateral interhemispheric transcallosal approach and an anterior interhemispheric transcallosal transchoroidal approach are also related.

METHODS

Five formalin-fixed human cadaveric heads (10 sides) were examined microsurgically. CT and MRI scans obtained before dissection were uploaded and fused into the navigation system. The authors performed contralateral and ipsilateral transcallosal approaches to the lateral ventricle. Using the navigation system, they measured areas of exposure, surgical freedom, angles of attack, and angle of view to the surgical surface. Two clinical cases are described.

RESULTS

The exposed areas of the ipsilateral (mean [± SD] 313.8 ± 85.0 mm2) and contralateral (344 ± 87.73 mm2) interhemispheric approaches were not significantly different (p = 0.12). Surgical freedom and vertical angles of attack were significantly larger for the contralateral approach to the most midsuperior reachable point (p = 0.02 and p = 0.01, respectively) and to the posterosuperior (p = 0.02 and p = 0.04) and central (p = 0.04 and p = 0.02) regions of the lateral wall of the lateral ventricle. Surgical freedom and vertical angles of attack to central and anterior points on the floor of the lateral ventricle did not differ significantly with approach. The angle to the surface of the caudate head region was less steep for the contralateral (135.6° ± 15.6°) than for the ipsilateral (152.0° ± 13.6°) approach (p = 0.02).

CONCLUSIONS

The anterior contralateral interhemispheric transcallosal approach provided a more expansive exposure to the lower two-thirds of the lateral ventricle and striothalamocapsular region. In normal-sized ventricles, the foramen of Monro and the choroidal fissure were better visualized through the lateral ventricle ipsilateral to the craniotomy than through the contralateral approach.

Restricted access

Sam Safavi-Abbasi, M. Yashar S. Kalani, Ben Frock, Hai Sun, Kaan Yagmurlu, Felix Moron, Laura A. Snyder, Randy J. Hlubek, Joseph M. Zabramski, Peter Nakaji and Robert F. Spetzler

OBJECTIVE

Fusiform cerebral aneurysms represent a small portion of intracranial aneurysms; differ in natural history, anatomy, and pathology; and can be difficult to treat compared with saccular aneurysms. The purpose of this study was to examine the techniques of treatment of ruptured and unruptured fusiform intracranial aneurysms and patient outcomes.

METHODS

In 45 patients with fusiform aneurysms, the authors retrospectively reviewed the presentation, location, and shape of the aneurysm; the microsurgical technique; the outcome at discharge and last follow-up; and the change in the aneurysm at last angiographic follow-up.

RESULTS

Overall, 48 fusiform aneurysms were treated in 45 patients (18 male, 27 female) with a mean age of 49 years (median 51 years; range 6 months–76 years). Twelve patients (27%) had ruptured aneurysms and 33 (73%) had unruptured aneurysms. The mean aneurysm size was 8.9 mm (range 6–28 mm). The aneurysms were treated by clip reconstruction (n = 22 [46%]), clip-wrapping (n = 18 [38%]), and vascular bypass (n = 8 [17%]). The mean (SD) hospital stay was 19.0 ± 7.4 days for the 12 patients with subarachnoid hemorrhage and 7.0 ± 5.6 days for the 33 patients with unruptured aneurysms. The mean follow-up was 38.7 ± 29.5 months (median 36 months; range 6–96 months). The mean Glasgow Outcome Scale score for the 12 patients with subarachnoid hemorrhage was 3.9; for the 33 patients with unruptured aneurysms, it was 4.8. No rehemorrhages occurred during follow-up. The overall annual risk of recurrence was 2% and that of rehemorrhage was 0%.

CONCLUSIONS

Fusiform and dolichoectatic aneurysms involving the entire vessel wall must be investigated individually. Although some of these aneurysms may be amenable to primary clipping and clip reconstruction, these complex lesions often require alternative microsurgical and endovascular treatment. These techniques can be performed with acceptable morbidity and mortality rates and with low rates of early rebleeding and recurrence.

Full access

Christopher D. Wilson, Sam Safavi-Abbasi, Hai Sun, M. Yashar S. Kalani, Yan D. Zhao, Michael R. Levitt, Ricardo A. Hanel, Eric Sauvageau, Timothy B. Mapstone, Felipe C. Albuquerque, Cameron G. McDougall, Peter Nakaji and Robert F. Spetzler

OBJECTIVE

Aneurysmal subarachnoid hemorrhage (aSAH) may be complicated by hydrocephalus in 6.5%–67% of cases. Some patients with aSAH develop shunt dependency, which is often managed by ventriculoperitoneal shunt placement. The objectives of this study were to review published risk factors for shunt dependency in patients with aSAH, determine the level of evidence for each factor, and calculate the magnitude of each risk factor to better guide patient management.

METHODS

The authors searched PubMed and MEDLINE databases for Level A and Level B articles published through December 31, 2014, that describe factors affecting shunt dependency after aSAH and performed a systematic review and meta-analysis, stratifying the existing data according to level of evidence.

RESULTS

On the basis of the results of the meta-analysis, risk factors for shunt dependency included high Fisher grade (OR 7.74, 95% CI 4.47–13.41), acute hydrocephalus (OR 5.67, 95% CI 3.96–8.12), in-hospital complications (OR 4.91, 95% CI 2.79–8.64), presence of intraventricular blood (OR 3.93, 95% CI 2.80–5.52), high Hunt and Hess Scale score (OR 3.25, 95% CI 2.51–4.21), rehemorrhage (OR 2.21, 95% CI 1.24–3.95), posterior circulation location of the aneurysm (OR 1.85, 95% CI 1.35–2.53), and age ≥ 60 years (OR 1.81, 95% CI 1.50–2.19). The only risk factor included in the meta-analysis that did not reach statistical significance was female sex (OR 1.13, 95% CI 0.77–1.65).

CONCLUSIONS

The authors identified several risk factors for shunt dependency in aSAH patients that help predict which patients are likely to require a permanent shunt. Although some of these risk factors are not independent of each other, this information assists clinicians in identifying at-risk patients and managing their treatment.

Free access

Kaan Yagmurlu, Sam Safavi-Abbasi, Evgenii Belykh, M. Yashar S. Kalani, Peter Nakaji, Albert L. Rhoton Jr., Robert F. Spetzler and Mark C. Preul

OBJECTIVE

The aim of this investigation was to modify the mini-pterional and mini-orbitozygomatic (mini-OZ) approaches in order to reduce the amount of tissue traumatization caused and to compare the use of the 2 approaches in the removal of circle of Willis aneurysms based on the authors' clinical experience and quantitative analysis.

METHODS

Three formalin-fixed adult cadaveric heads injected with colored silicone were examined. Surgical freedom and angle of attack of the mini-pterional and mini-OZ approaches were measured at 9 anatomical points, and the measurements were compared. The authors also retrospectively reviewed the cases of 396 patients with ruptured and unruptured single aneurysms in the circle of Willis treated by microsurgical techniques at their institution between January 2006 and November 2014.

RESULTS

A significant difference in surgical freedom was found in favor of the mini-pterional approach for access to the ipsilateral internal carotid artery (ICA) and middle cerebral artery (MCA) bifurcations, the most distal point of the ipsilateral posterior cerebral artery (PCA), and the basilar artery (BA) tip. No statistically significant differences were found between the mini-pterional and mini-OZ approaches for access to the posterior clinoid process, the most distal point of the superior cerebellar artery (SCA), the anterior communicating artery (ACoA), the contralateral ICA bifurcation, and the most distal point of the contralateral MCA. A trend toward increasing surgical freedom was found for the mini-OZ approach to the ACoA and the contralateral ICA bifurcation. The lengths exposed through the mini-OZ approach were longer than those exposed by the mini-pterional approach for the ipsilateral PCA segment (11.5 ± 1.9 mm) between the BA and the most distal point of the P2 segment of the PCA, for the ipsilateral SCA (10.5 ± 1.1 mm) between the BA and the most distal point of the SCA, and for the contralateral anterior cerebral artery (ACA) (21 ± 6.1 mm) between the ICA bifurcation and the most distal point of the A2 segment of the ACA. The exposed length of the contralateral MCA (24.2 ± 8.6 mm) between the contralateral ICA bifurcation and the most distal point of the MCA segment was longer through the mini-pterional approach. The vertical angle of attack (anteroposterior direction) was significantly greater with the mini-pterional approach than with the mini-OZ approach, except in the ACoA and contralateral ICA bifurcation. The horizontal angle of attack (mediolateral direction) was similar with both approaches, except in the ACoA, contralateral ICA bifurcation, and contralateral MCA bifurcation, where the angle was significantly increased in the mini-OZ approach.

CONCLUSIONS

The mini-pterional and mini-OZ approaches, as currently performed in select patients, provide less tissue traumatization (i.e., less temporal muscle manipulation, less brain parenchyma retraction) from the skin to the aneurysm than standard approaches. Anatomical quantitative analysis showed that the mini-OZ approach provides better exposure to the contralateral side for controlling the contralateral parent arteries and multiple aneurysms. The mini-pterional approach has greater surgical freedom (maneuverability) for ipsilateral circle of Willis aneurysms.

Full access

Evgenii Belykh, Ting Lei, Sam Safavi-Abbasi, Kaan Yagmurlu, Rami O. Almefty, Hai Sun, Kaith K. Almefty, Olga Belykh, Vadim A. Byvaltsev, Robert F. Spetzler, Peter Nakaji and Mark C. Preul

OBJECTIVE

Microvascular anastomosis is a basic neurosurgical technique that should be mastered in the laboratory. Human and bovine placentas have been proposed as convenient surgical practice models; however, the histologic characteristics of these tissues have not been compared with human cerebral vessels, and the models have not been validated as simulation training models. In this study, the authors assessed the construct, face, and content validities of microvascular bypass simulation models that used human and bovine placental vessels.

METHODS

The characteristics of vessel segments from 30 human and 10 bovine placentas were assessed anatomically and histologically. Microvascular bypasses were performed on the placenta models according to a delineated training module by “trained” participants (10 practicing neurosurgeons and 7 residents with microsurgical experience) and “untrained” participants (10 medical students and 3 residents without experience). Anastomosis performance and impressions of the model were assessed using the Northwestern Objective Microanastomosis Assessment Tool (NOMAT) scale and a posttraining survey.

RESULTS

Human placental arteries were found to approximate the M2–M4 cerebral and superficial temporal arteries, and bovine placental veins were found to approximate the internal carotid and radial arteries. The mean NOMAT performance score was 37.2 ± 7.0 in the untrained group versus 62.7 ± 6.1 in the trained group (p < 0.01; construct validity). A 50% probability of allocation to either group corresponded to 50 NOMAT points. In the posttraining survey, 16 of 17 of the trained participants (94%) scored the model's replication of real bypass surgery as high, and 16 of 17 (94%) scored the difficulty as “the same” (face validity). All participants, 30 of 30 (100%), answered positively to questions regarding the ability of the model to improve microsurgical technique (content validity).

CONCLUSIONS

Human placental arteries and bovine placental veins are convenient, anatomically relevant, and beneficial models for microneurosurgical training. Microanastomosis simulation using these models has high face, content, and construct validities. A NOMAT score of more than 50 indicated successful performance of the microanastomosis tasks.

Full access

Sam Safavi-Abbasi, Felix Moron, Hai Sun, Mark E. Oppenlander, M. Yashar S. Kalani, Celene B. Mulholland, Joseph M. Zabramski, Peter Nakaji and Robert F. Spetzler

OBJECTIVE

To address the challenges of microsurgically treating broad-based, frail, and otherwise complex aneurysms that are not amenable to direct clipping, alternative techniques have been developed. One such technique is to use cotton to augment clipping (“cotton-clipping” technique), which is also used to manage intraoperative aneurysm neck rupture, and another is to reinforce unclippable segments or remnants of aneurysm necks with cotton (“cotton-augmentation” technique). This study reviews the natural history of patients with aneurysms treated with cotton-clipping and cotton-augmentation techniques.

METHODS

The authors queried a database consisting of all patients with aneurysms treated at Barrow Neurological Institute in Phoenix, Arizona, between January 1, 2004, and December 31, 2014, to identify cases in which cotton-clipping or cotton-augmentation strategies had been used. Management was categorized as the cotton-clipping technique if cotton was used within the blades of the aneurysm clip and as the cotton-clipping technique if cotton was used to reinforce aneurysms or portions of the aneurysm that were unclippable due to the presence of perforators, atherosclerosis, or residual aneurysms. Data were reviewed to assess patient outcomes and annual rates of aneurysm recurrence or hemorrhage after the initial procedures were performed.

RESULTS

The authors identified 60 aneurysms treated with these techniques in 57 patients (18 patients with ruptured aneurysms and 39 patients with unruptured aneurysms) whose mean age was 53.1 years (median 55 years; range 24–72 years). Twenty-three aneurysms (11 cases of subarachnoid hemorrhage) were treated using cotton-clipping and 37 with cotton-augmentation techniques (7 cases of subarachnoid hemorrhage). In total, 18 patients presented with subarachnoid hemorrhage. The mean Glasgow Outcome Scale (GOS) score at the time of discharge was 4.4. At a mean follow-up of 60.9 ± 35.6 months (median 70 months; range 10–126 months), the mean GOS score at last follow-up was 4.8. The total number of patient follow-up years was 289.4. During the follow-up period, none of the cotton-clipped aneurysms increased in size, changed in configuration, or rebled. None of the patients experienced early rebleeding. The annual hemorrhage rate for aneurysms treated with cotton-augmentation was 0.52% and the recurrence rate was 1.03% per year. For all patients in the study, the overall risk of hemorrhage was 0.35% per year and the annual recurrence rate was 0.69%.

CONCLUSIONS

Cotton-clipping is an effective and durable treatment strategy for intraoperative aneurysm rupture and for management of broad-based aneurysms. Cotton-augmentation can be safely used to manage unclippable or partially clipped intracranial aneurysms and affords protection from early aneurysm re-rupture and a relatively low rate of late rehemorrhage.

Full access

Sam Safavi-Abbasi, Noritaka Komune, Jacob B. Archer, Hai Sun, Nicholas Theodore, Jeffrey James, Andrew S. Little, Peter Nakaji, Michael E. Sughrue, Albert L. Rhoton and Robert F. Spetzler

OBJECT

The objective of this study was to describe the surgical anatomy and technical nuances of various vascularized tissue flaps.

METHODS

The surgical anatomy of various tissue flaps and their vascular pedicles was studied in 5 colored silicone-injected anatomical specimens. Medical records were reviewed of 11 consecutive patients who underwent repair of extensive skull base defects with a combination of various vascularized flaps.

RESULTS

The supraorbital, supratrochlear, superficial temporal, greater auricular, and occipital arteries contribute to the vascular supply of the pericranium. The pericranial flap can be designed based on an axial blood supply. Laterally, various flaps are supplied by the deep or superficial temporal arteries. The nasoseptal flap is a vascular pedicled flap based on the nasoseptal artery. Patients with extensive skull base defects can undergo effective repair with dual flaps or triple flaps using these pedicled vascularized flaps.

CONCLUSIONS

Multiple pedicled flaps are available for reconstitution of the skull base. Knowledge of the surgical anatomy of these flaps is crucial for the skull base surgeon. These vascularized tissue flaps can be used effectively as single or combination flaps. Multilayered closure of cranial base defects with vascularized tissue can be used safely and may lead to excellent repair outcomes.

Full access

Sam Safavi-Abbasi, Timothy B. Mapstone, Jacob B. Archer, Christopher Wilson, Nicholas Theodore, Robert F. Spetzler and Mark C. Preul

An understanding of the underlying pathophysiology of tethered cord syndrome (TCS) and modern management strategies have only developed within the past few decades. Current understanding of this entity first began with the understanding and management of spina bifida; this later led to the gradual recognition of spina bifida occulta and the symptoms associated with tethering of the filum terminale. In the 17th century, Dutch anatomists provided the first descriptions and initiated surgical management efforts for spina bifida. In the 19th century, the term “spina bifida occulta” was coined and various presentations of spinal dysraphism were appreciated. The association of urinary, cutaneous, and skeletal abnormalities with spinal dysraphism was recognized in the 20th century. Early in the 20th century, some physicians began to suspect that traction on the conus medullaris caused myelodysplasia-related symptoms and that prophylactic surgical management could prevent the occurrence of clinical manifestations. It was not, however, until later in the 20th century that the term “tethered spinal cord” and the modern management of TCS were introduced. This gradual advancement in understanding at a time before the development of modern imaging modalities illustrates how, over the centuries, anatomists, pathologists, neurologists, and surgeons used clinical examination, a high level of suspicion, and interest in the subtle and overt clinical appearances of spinal dysraphism and TCS to advance understanding of pathophysiology, clinical appearance, and treatment of this entity. With the availability of modern imaging, spinal dysraphism can now be diagnosed and treated as early as the intrauterine stage.