Browse

You are looking at 1 - 10 of 14 items for

  • By Author: Protopsaltis, Themistocles x
Clear All
Restricted access

M. Burhan Janjua, Jared C. Tishelman, Dennis Vasquez-Montes, Max Vaynrub, Thomas J. Errico, Aaron J. Buckland and Themistocles Protopsaltis

Sitting radiographs are a valuable tool to consider the thoracic compensatory mechanism in patients who are candidates for thoracolumbar correction surgery.

Free access

Taemin Oh, Justin K. Scheer, Justin S. Smith, Richard Hostin, Chessie Robinson, Jeffrey L. Gum, Frank Schwab, Robert A. Hart, Virginie Lafage, Douglas C. Burton, Shay Bess, Themistocles Protopsaltis, Eric O. Klineberg, Christopher I. Shaffrey, Christopher P. Ames and the International Spine Study Group

OBJECTIVE

Patients with adult spinal deformity (ASD) experience significant quality of life improvements after surgery. Treatment, however, is expensive and complication rates are high. Predictive analytics has the potential to use many variables to make accurate predictions in large data sets. A validated minimum clinically important difference (MCID) model has the potential to assist in patient selection, thereby improving outcomes and, potentially, cost-effectiveness.

METHODS

The present study was a retrospective analysis of a multiinstitutional database of patients with ASD. Inclusion criteria were as follows: age ≥ 18 years, radiographic evidence of ASD, 2-year follow-up, and preoperative Oswestry Disability Index (ODI) > 15. Forty-six variables were used for model training: demographic data, radiographic parameters, surgical variables, and results on the health-related quality of life questionnaire. Patients were grouped as reaching a 2-year ODI MCID (+MCID) or not (−MCID). An ensemble of 5 different bootstrapped decision trees was constructed using the C5.0 algorithm. Internal validation was performed via 70:30 data split for training/testing. Model accuracy and area under the curve (AUC) were calculated. The mean quality-adjusted life years (QALYs) and QALYs gained at 2 years were calculated and discounted at 3.5% per year. The QALYs were compared between patients in the +MCID and –MCID groups.

RESULTS

A total of 234 patients met inclusion criteria (+MCID 129, −MCID 105). Sixty-nine patients (29.5%) were included for model testing. Predicted versus actual results were 50 versus 40 for +MCID and 19 versus 29 for −MCID (i.e., 10 patients were misclassified). Model accuracy was 85.5%, with 0.96 AUC. Predicted results showed that patients in the +MCID group had significantly greater 2-year mean QALYs (p = 0.0057) and QALYs gained (p = 0.0002).

CONCLUSIONS

A successful model with 85.5% accuracy and 0.96 AUC was constructed to predict which patients would reach ODI MCID. The patients in the +MCID group had significantly higher mean 2-year QALYs and QALYs gained. This study provides proof of concept for using predictive modeling techniques to optimize patient selection in complex spine surgery.

Full access

Dominic Maggio, Tamir T. Ailon, Justin S. Smith, Christopher I. Shaffrey, Virginie Lafage, Frank Schwab, Regis W. Haid Jr., Themistocles Protopsaltis, Eric Klineberg, Justin K. Scheer, Shay Bess, Paul M. Arnold, Jens Chapman, Michael G. Fehlings, Christopher Ames, AOSpine North America and International Spine Study Group

OBJECT

The associations among global spinal alignment, patient-reported disability, and surgical outcomes have increasingly gained attention. The assessment of global spinal alignment requires standing long-cassette anteroposterior and lateral radiographs; however, spine surgeons routinely rely only on short-segment imaging when evaluating seemingly isolated lumbar pathology. This may prohibit adequate surgical planning and may predispose surgeons to not recognize associated pathology in the thoracic spine and sagittal spinopelvic malalignment. The authors used a case-based survey questionnaire to evaluate if including long-cassette radiographs led to changes to respondents' operative plans as compared with their chosen plan when cases contained standard imaging of the involved lumbar spine only.

METHODS

A case-based survey was distributed to AOSpine International members that consisted of 15 cases of lumbar spine pathology and lumbar imaging only. The same 15 cases were then shuffled and presented a second time with additional long-cassette radiographs. Each case required participants to select a single operative plan with 5 choices ranging from least to most extensive. The cases included 5 “control” cases with normal global spinal alignment and 10 “test” cases with significant sagittal and/or coronal malalignment. Mean scores were determined for each question with higher scores representing more invasive and/or extensive operative plans.

RESULTS

Of 712 spine surgeons who started the survey, 316 (44%) completed the entire series, including 68% of surgeons with spine fellowship training and representation from more than 40 countries. For test cases, but not for control cases, there were significantly higher average surgical invasiveness scores for cases presented with long-cassette radiographs (4.2) as compared with those cases with lumbar imaging only (3.4; p = 0.002). The addition of long-cassette radiographs resulted in 82.1% of respondents recommending instrumentation up to the thoracic spine, a 23.2% increase as compared with the same cases presented with lumbar imaging only (p = 0.008).

CONCLUSIONS

This study demonstrates the importance of maintaining a low threshold for performing standing long-cassette imaging when assessing seemingly isolated lumbar pathology. Such imaging is necessary for the assessment of spinopelvic and global spinal alignment, which can be important in operative planning. Deformity, particularly positive sagittal malalignment, may go undetected unless one maintains a high index of suspicion and obtains long-cassette radiographs. It is recommended that spine surgeons recognize the prevalence and importance of such deformity when contemplating operative intervention.

Free access

Justin S. Smith, Christopher I. Shaffrey, Virginie Lafage, Frank Schwab, Justin K. Scheer, Themistocles Protopsaltis, Eric Klineberg, Munish Gupta, Richard Hostin, Kai-Ming G. Fu, Gregory M. Mundis Jr., Han Jo Kim, Vedat Deviren, Alex Soroceanu, Robert A. Hart, Douglas C. Burton, Shay Bess, Christopher P. Ames and the International Spine Study Group

OBJECT

Although recent studies suggest that average clinical outcomes are improved following surgery for selected adult spinal deformity (ASD) patients, these outcomes span a broad range. Few studies have specifically addressed factors that may predict favorable clinical outcomes. The objective of this study was to compare patients with ASD with best versus worst clinical outcomes following surgical treatment to identify distinguishing factors that may prove useful for patient counseling and optimization of clinical outcomes.

METHODS

This is a retrospective review of a prospectively collected, multicenter, database of consecutively enrolled patients with ASD who were treated operatively. Inclusion criteria were age > 18 years and ASD. For patients with a minimum of 2-year follow-up, those with best versus worst outcomes were compared separately based on Scoliosis Research Society-22 (SRS-22) and Oswestry Disability Index (ODI) scores. Only patients with a baseline SRS-22 ≤ 3.5 or ODI ≥ 30 were included to minimize ceiling/floor effects. Best and worst outcomes were defined for SRS-22 (≥ 4.5 and ≤ 2.5, respectively) and ODI (≤ 15 and ≥ 50, respectively).

RESULTS

Of 257 patients who met the inclusion criteria, 227 (88%) had complete baseline and 2-year follow-up SRS-22 and ODI outcomes scores and radiographic imaging and were analyzed in the present study. Of these 227 patients, 187 had baseline SRS-22 scores ≤ 3.5, and 162 had baseline ODI scores ≥ 30. Forthe SRS-22, best and worst outcomes criteria were met at follow-up for 25 and 27 patients, respectively. For the ODI, best and worst outcomes criteria were met at follow-up for 43 and 51 patients, respectively. With respect to the SRS-22, compared with best outcome patients, those with worst outcomes had higher baseline SRS-22 scores (p < 0.0001), higher prevalence of baseline depression (p < 0.001), more comorbidities (p = 0.012), greater prevalence of prior surgery (p = 0.007), a higher complication rate (p = 0.012), and worse baseline deformity (sagittal vertical axis [SVA], p = 0.045; pelvic incidence [PI] and lumbar lordosis [LL] mismatch, p = 0.034). The best-fit multivariate model for SRS-22 included baseline SRS-22 (p = 0.033), baseline depression (p = 0.012), and complications (p = 0.030). With respect to the ODI, compared with best outcome patients, those with worst outcomes had greater baseline ODI scores (p < 0.001), greater baseline body mass index (BMI; p = 0.002), higher prevalence of baseline depression (p < 0.028), greater baseline SVA (p = 0.016), a higher complication rate (p = 0.02), and greater 2-year SVA (p < 0.001) and PI-LL mismatch (p = 0.042). The best-fit multivariate model for ODI included baseline ODI score (p < 0.001), 2-year SVA (p = 0.014) and baseline BMI (p = 0.037). Age did not distinguish best versus worst outcomes for SRS-22 or ODI (p > 0.1).

CONCLUSIONS

Few studies have specifically addressed factors that distinguish between the best versus worst clinical outcomes for ASD surgery. In this study, baseline and perioperative factors distinguishing between the best and worst outcomes for ASD surgery included several patient factors (baseline depression, BMI, comorbidities, and disability), as well as residual deformity (SVA), and occurrence of complications. These findings suggest factors that may warrant greater awareness among clinicians to achieve optimal surgical outcomes for patients with ASD.

Full access

Justin S. Smith, Ellen Shaffrey, Eric Klineberg, Christopher I. Shaffrey, Virginie Lafage, Frank J. Schwab, Themistocles Protopsaltis, Justin K. Scheer, Gregory M. Mundis Jr., Kai-Ming G. Fu, Munish C. Gupta, Richard Hostin, Vedat Deviren, Khaled Kebaish, Robert Hart, Douglas C. Burton, Breton Line, Shay Bess, Christopher P. Ames and The International Spine Study Group

Object

Improved understanding of rod fracture (RF) following adult spinal deformity (ASD) surgery could prove valuable for surgical planning, patient counseling, and implant design. The objective of this study was to prospectively assess the rates of and risk factors for RF following surgery for ASD.

Methods

This was a prospective, multicenter, consecutive series. Inclusion criteria were ASD, age > 18 years, ≥5 levels posterior instrumented fusion, baseline full-length standing spine radiographs, and either development of RF or full-length standing spine radiographs obtained at least 1 year after surgery that demonstrated lack of RF. ASD was defined as presence of at least one of the following: coronal Cobb angle ≥20°, sagittal vertical axis (SVA) ≥5 cm, pelvic tilt (PT) ≥25°, and thoracic kyphosis ≥60°.

Results

Of 287 patients who otherwise met inclusion criteria, 200 (70%) either demonstrated RF or had radiographic imaging obtained at a minimum of 1 year after surgery showing lack of RF. The patients' mean age was 54.8 ± 15.8 years; 81% were women; 10% were smokers; the mean body mass index (BMI) was 27.1 ± 6.5; the mean number of levels fused was 12.0 ± 3.8; and 50 patients (25%) had a pedicle subtraction osteotomy (PSO). The rod material was cobalt chromium (CC) in 53%, stainless steel (SS), in 26%, or titanium alloy (TA) in 21% of cases; the rod diameters were 5.5 mm (in 68% of cases), 6.0 mm (in 13%), or 6.35 mm (in 19%). RF occurred in 18 cases (9.0%) at a mean of 14.7 months (range 3–27 months); patients without RF had a mean follow-up of 19 months (range 12–24 months). Patients with RF were older (62.3 vs 54.1 years, p = 0.036), had greater BMI (30.6 vs 26.7, p = 0.019), had greater baseline sagittal malalignment (SVA 11.8 vs 5.0 cm, p = 0.001; PT 29.1° vs 21.9°, p = 0.016; and pelvic incidence [PI]–lumbar lordosis [LL] mismatch 29.6° vs 12.0°, p = 0.002), and had greater sagittal alignment correction following surgery (SVA reduction by 9.6 vs 2.8 cm, p < 0.001; and PI-LL mismatch reduction by 26.3° vs 10.9°, p = 0.003). RF occurred in 22.0% of patients with PSO (10 of the 11 fractures occurred adjacent to the PSO level), with rates ranging from 10.0% to 31.6% across centers. CC rods were used in 68% of PSO cases, including all with RF. Smoking, levels fused, and rod diameter did not differ significantly between patients with and without RF (p > 0.05). In cases including a PSO, the rate of RF was significantly higher with CC rods than with TA or SS rods (33% vs 0%, p = 0.010). On multivariate analysis, only PSO was associated with RF (p = 0.001, OR 5.76, 95% CI 2.01–15.8).

Conclusions

Rod fracture occurred in 9.0% of ASD patients and in 22.0% of PSO patients with a minimum of 1-year follow-up. With further follow-up these rates would likely be even higher. There was a substantial range in the rate of RF with PSO across centers, suggesting potential variations in technique that warrant future investigation. Due to higher rates of RF with PSO, alternative instrumentation strategies should be considered for these cases.