You are looking at 81 - 90 of 213 items for

  • By Author: Oldfield, Edward H. x
Clear All
Restricted access

H. Jeffrey Kim, John A. Butman, Carmen Brewer, Christopher Zalewski, Alexander O. Vortmeyer, Gladys Glenn, Edward H. Oldfield and Russell R. Lonser

Object. Endolymphatic sac tumors (ELSTs), which often are associated with von Hippel—Lindau (VHL) disease, cause irreversible hearing loss and vestibulopathy. Clinical and imaging surveillance protocols provide new insights into the natural history, mechanisms of symptom formation, and indications for the treatment of ELSTs. To clarify the uncertainties associated with the pathophysiology and treatment of ELSTs, the authors describe a series of patients with VHL disease in whom serial examinations recorded the development of ELSTs.

Methods. Patients with VHL disease were included if serial clinical and imaging studies captured the development of ELSTs, and the patients underwent tumor resection. The patients' clinical, audiological, and imaging characteristics as well as their operative results were analyzed.

Five consecutive patients (three men and two women) with a mean age at surgery of 34.8 years and a follow-up period of 6 to 18 months were included in this study. Audiovestibular symptoms were present in three patients before a tumor was evident on neuroimaging. Imaging evidence of an intralabyrinthine hemorrhage coincided with a loss of hearing in three patients. Successful resection of the ELSTs was accomplished by performing a retrolabyrinthine posterior petrosectomy (RLPP). Hearing stabilized and vestibular symptoms resolved after surgery in all patients. No patient has experienced a recurrence.

Conclusions. Audiovestibular symptoms, including hearing loss, in patients with VHL disease can be the result of microscopic ELSTs. Once an ELST has been detected, it can be completely resected via an RLPP with preservation of hearing and amelioration of vestibular symptoms. Early detection and surgical treatment of small ELSTs, when hearing is still present, should reduce the incidence and severity of hearing loss, tinnitus, vertigo, and cranial nerve dysfunction, which are associated with these tumors.

Restricted access

David Croteau, Stuart Walbridge, Paul F. Morrison, John A. Butman, Alexander O. Vortmeyer, Dennis Johnson, Edward H. Oldfield and Russell R. Lonser

Object. Convection-enhanced delivery (CED) is increasingly used to distribute therapeutic agents to locations in the central nervous system. The optimal application of convective distribution of various agents requires the development of imaging tracers to monitor CED in vivo in real time. The authors examined the safety and utility of an iodine-based low-molecular-weight surrogate tracer for computerized tomography (CT) scanning during CED.

Methods. Various volumes (total volume range 90–150 µ1) of iopamidol (MW 777 D) were delivered to the cerebral white matter of four primates (Macaca mulatta) by using CED. The distribution of this imaging tracer was determined by in vivo real-time and postinfusion CT scanning (≤ 5 days after infusion [one animal]) as well as by quantitative autoradiography (14C-sucrose [all animals] and 14C-dextran [one animal]), and compared with a mathematical model. Clinical observation (≤ 5 months) and histopathological analyses were used to evaluate the safety and toxicity of the tracer delivery.

Real-time CT scanning of the tracer during infusion revealed a clearly definable region of perfusion. The volume of distribution (Vd) increased linearly (r2 = 0.97) with an increasing volume of infusion (Vi). The overall Vd/Vi ratio was 4.1 ± 0.7 (mean ± standard deviation) and the distribution of infusate was homogeneous. Quantitative autoradiography confirmed the accuracy of the imaged distribution for a small (sucrose, MW 359 D) and a large (dextran, MW 70 kD) molecule. The distribution of the infusate was identifiable up to 72 hours after infusion. There was no clinical or histopathological evidence of toxicity in any animal.

Conclusions. Real-time in vivo CT scanning of CED of iopamidol appears to be safe, feasible, and suitable for monitoring convective delivery of drugs with certain features and low infusion volumes.

Restricted access

Alexander M. Gorbach, John D. Heiss, Leonid Kopylev and Edward H. Oldfield

Object. Although clinical imaging defines the anatomical relationship between a brain tumor and the surrounding brain and neurological deficits indicate the neurophysiological consequences of the tumor, the effect of a brain tumor on vascular physiology is less clear.

Methods. An infrared camera was used to measure the temperature of the cortical surface before, during, and after removal of a mass in 34 patients (primary brain tumor in 21 patients, brain metastases in 10 and falx meningioma, cavernous angioma, and radiation necrosis—astrocytosis in one patient each). To establish the magnitude of the effect on blood flow induced by the tumor, the images were compared with those from a group of six patients who underwent temporal lobectomy for epilepsy. In four cases a cerebral artery was temporarily occluded during the course of the surgery and infrared emissions from the cortex before and after occlusion were compared to establish the relationship of local temperature to regional blood flow.

Discrete temperature gradients were associated with surgically verified lesions in all cases. Depending on the type of tumor, the cortex overlying the tumor was either colder or warmer than the surrounding cortex. Spatial reorganization of thermal gradients was observed after tumor resection. Temperature gradients of the cortex in patients with tumors exceeded those measured in the cortex of patients who underwent epilepsy surgery.

Conclusions. Brain tumors induce changes in cerebral blood flow (CBF) in the cortex, which can be made visible by performing infrared imaging during cranial surgery. A reduction in CBF beyond the tumor margin improves after removal of the lesion.

Restricted access

Carla S. Jung, Brian A. Iuliano, Judith Harvey-White, Michael G. Espey, Edward H. Oldfield and Ryszard M. Pluta

Object. Decreased availability of nitric oxide (NO) has been proposed to evoke delayed cerebral vasospasm after subarachnoid hemorrhage (SAH). Asymmetric dimethyl-l-arginine (ADMA) inhibits endothelial NO synthase (eNOS) and, therefore, may be responsible for decreased NO availability in cases of cerebral vasospasm. The goal of this study was to determine whether ADMA levels are associated with cerebral vasospasm in a primate model of SAH.

Methods. Twenty-two cynomolgus monkeys (six control animals and 16 with SAH) were used in this study. The levels of ADMA, l-arginine, l-citrulline, nitrites, and nitrates in cerebrospinal fluid (CSF) and serum were determined on Days 0, 7, 14, and 21 following onset of SAH. Cerebral arteriography was performed to assess the degree of vasospasm. Western blot analyses of the right and left middle cerebral arteries (MCAs) were performed to assess the expression of eNOS, type I protein—arginine methyl transferase (PRMT1) and dimethylarginine dimethylaminohydrolase (DDAH2).

Cerebrospinal fluid levels of ADMA remained unchanged in the control group (six animals) and in animals with SAH that did not have vasospasm (five animals; p = 0.17), but the levels increased in animals with vasospasm (11 animals) on Day 7 post-SAH (p < 0.01) and decreased on Days 14 through 21 (p < 0.05). Cerebrospinal fluid levels of ADMA correlated directly with the degree of vasospasm (correlation coefficient = 0.7, p = 0.0001; 95% confidence interval: 0.43–0.83). Levels of nitrite and nitrate as well as those of l-citrulline in CSF were decreased in animals with vasospasm. Furthermore, DDAH2 expression was attenuated in the right spastic MCA on Day 7 post-SAH, whereas eNOS and PRMT1 expression remained unchanged.

Conclusions. Changes in the CSF levels of ADMA are associated with the development and resolution of vasospasm found on arteriograms after SAH. The results indicate that endogenous inhibition of eNOS by ADMA may be involved in the development of delayed cerebral vasospasm. Inhibition of ADMA production may provide a new therapeutic approach for cerebral vasospasm after SAH.

Restricted access

Gabriel C. Tender, John A. Butman, Edward H. Oldfield and Russell R. Lonser

Restricted access

Daniel Choo, Lawrence Shotland, Maryann Mastroianni, Gladys Glenn, Carter van Waes, W. Marston Linehan and Edward H. Oldfield

Object. Von Hippel—Lindau (VHL) disease is a hereditary multiple-neoplasia syndrome mapping to chromosome 3p25–26. Endolymphatic sac (ELS) tumors have been identified as a neoplastic manifestation of VHL disease. The purpose of this study was to evaluate comprehensively the natural history of inner ear disease in a large population of patients with confirmed or suspected VHL disease and to correlate the clinical features with the VHL genotype.

Methods. The authors collated and analyzed clinical and genotypic data obtained in patients enrolled in an Institutional Review Board—approved protocol in which families and individuals affected by VHL disease were studied. These data included results from multidisciplinary history workups and physical examinations, imaging studies, and a battery of audiological tests.

One hundred seventy-five patients were enrolled in the study, 129 with confirmed VHL disease and 46 of their family members in whom test results for VHL disease were negative and who served as controls. Twenty-one patients had ELS tumors that were evident on magnetic resonance images; three of them had bilateral ELS lesions. Hearing loss, often sudden in onset and severe to profound in nature, vestibulopathy, aural fullness, and tinnitus represented the primary symptoms of ELS tumor. Distinct patterns of auditory and vestibular dysfunction occurred at different stages of the disease. Phenotypic data showed that 17 of 21 patients with ELS tumors did not have pheochromocytomas, whereas all had VHL disease affecting the kidney, all but two had VHL disease affecting the central nervous system, and all but one had disease affecting the pancreas. Genotyping revealed 10 rearrangements (partial deletions), eight single bp substitutions, and one 3-bp insertion. Although there was no difference in the incidence of hearing loss between populations, symptoms of imbalance and aural fullness were more common in patients with VHL disease but without imaging evidence of ELS tumor than they were in family members who did not have VHL disease (p < 0.01).

Conclusions. Endolymphatic sac tumors are frequently associated with VHL disease. Symptoms of disequilibrium or aural fullness in patients with VHL disease may be an early indication of endolymphatic dysfunction. Patients with VHL disease provide a unique opportunity to examine the effects of specific gene mutations and a discrete neoplastic process on the human inner ear. The study of ELS tumors in this group also provides a pathological model of ELS function and supplies evidence for a role of the ELS in clinical Ménière-like disease(s).

Restricted access

Brian A. Iuliano, Ryszard M. Pluta, Carla Jung and Edward H. Oldfield


Although abnormalities in the control of endothelial vasomotility have been reported in both experimental and clinical studies, the mechanism of the endothelial dysfunction that occurs following subarachnoid hemorrhage (SAH) remains unclear. Because of the absence of previous in vivo studies of endothelial function in cerebral vessels in response to SAH or cerebral vasospasm, the authors investigated endothelium—dependent responses in an established primate model of vasospasm after SAH. Endothelial function was assessed by examining vascular responses to intracarotid injections of various drugs known to act via the endothelium. Drugs that have a rapid total body clearance were selected so that their pharmacological effects would be limited to the cerebral circulation after an intracarotid infusion.


Seventeen adult male cynomolgus monkeys were used. Cerebrovascular endothelium—dependent responses were examined in control animals and in animals with SAH 7, 14, and 21 days after placement of a subarachnoid clot around the right middle cerebral artery. Cortical cerebral blood flow (CBF) and cerebrovascular resistance (CVR) were recorded continuously during 5-minute intracarotid infusions of 5% dextrose vehicle, acetylcholine, histamine, bradykinin, or Calcimycin.

In control animals the intracarotid infusion of acetylcholine produced a significant (7.8 ± 9.5%) increase in CBF and a 9.3 ± 8.7% reduction in CVR in comparison with a control infusion of dextrose vehicle. The responses to acetylcholine disappeared in animals 7 days post-SAH, specifically in the subset of animals in which arteriography confirmed the presence of vasospasm. Infusion of Calcimycin produced no significant changes in CBF or CVR in control animals, but resulted in a significant reduction in CBF and increase in CVR in animals 7 days after SAH and in animals with vasospasm. An infusion of histamine or bradykinin had no significant effect on CBF or CVR.


An intracarotid infusion of acetylcholine, but not one of histamine, bradykinin, or Calcimycin, produced a measurable physiological response in the normal primate cerebrovasculature. Cerebral vasospasm that occurred after SAH produced a pathophysiological effect similar to the endothelial denudation shown in the in vitro experiments of Furchgott and Zawadzki, in which acetylcholine constricted the vessels via activation of receptors on smooth-muscle cells. Changes in vascular responses to acetylcholine and Calcimycin in animals with vasospasm, compared with control animals, provide evidence that endothelial dysfunction plays a key role in the development and/or sustenance of vasospasm after SAH.

Restricted access

Jeffrey W. Degen, Stuart Walbridge, Alexander O. Vortmeyer, Edward H. Oldfield and Russell R. Lonser

Object. Convection-enhanced delivery (CED) can be used safely to perfuse regions of the central nervous system (CNS) with therapeutic agents in a manner that bypasses the blood—brain barrier (BBB). These features make CED a potentially ideal method for the distribution of potent chemotherapeutic agents with certain pharmacokinetic properties to tumors of the CNS. To determine the safety and efficacy of the CED of two chemotherapeutic agents (with properties ideal for this method of delivery) into the CNS, the authors perfused naive rats and those harboring 9L gliomas with carboplatin or gemcitabine.

Methods. Dose-escalation toxicity studies were performed by perfusing the striatum (10 µl, 24 rats) and brainstem (10 µl, 16 rats) of naive rats with carboplatin (0.1, 1, and 10 mg/ml) or gemcitabine (0.4, 4, and 40 mg/ml) via CED. Efficacy trials involved the intracranial implantation of 9L tumor cells in 20 Fischer 344 rats. The tumor and surrounding regions were perfused with 40 µl of saline (control group, four rats), 1 mg/ml of carboplatin (four rats), or 4 mg/ml of gemcitabine (four rats) 7 days after implantation. Eight rats harboring the 9L glioma were treated with the systemic administration of 60 mg/kg of carboplatin (four rats) or 150 mg/kg of gemcitabine (four rats) 7 days postimplantation. Clinical, gross, and histological analyses were used to determine toxicity and efficacy.

Toxicity occurred in rats that had received only the highest dose of the CED of carboplatin or gemcitabine. Among rats with 9L gliomas, all control and systemically treated animals died within 26 days of tumor implantation. Long-term survival (120 days) and eradication of the tumor occurred in both CED-treated groups (75% of rats in the carboplatin group and 50% of rats in the gemcitabine group). Furthermore, animals harboring the 9L glioma and treated with intratumoral CED of carboplatin or gemcitabine survived significantly longer than controls treated with intratumoral saline (p < 0.01) or systemic chemotherapy (p < 0.01).

Conclusions. The perfusion of sensitive regions of the rat brain can be accomplished without toxicity by using therapeutic concentrations of carboplatin or gemcitabine. In addition, CED of carboplatin or gemcitabine to tumors in this glioma model is safe and has potent antitumor effects. These findings indicate that similar treatment paradigms may be useful in the treatment of glial neoplasms in humans.

Restricted access

Astrid Weyerbrock, Stuart Walbridge, Ryszard M. Pluta, Joseph E. Saavedra, Larry K. Keefer and Edward H. Oldfield

Object. The response of brain tumors to systemic chemotherapy is limited by the blood—tumor barrier (BTB). Nitric oxide (NO) has been implicated in the regulation of vascular permeability and blood flow. The authors evaluated the effects of exogenous NO, which was released from a short-acting NO donor (Proli/NO), and those of NO metabolites on the capillary permeability of tumors and normal brain tissue by using quantitative autoradiography in a C6 glioma model in rats.

Methods. The Proli/NO was infused at a wide dose range (10−2 to 10−12 M) either intravenously or into the internal carotid artery (ICA) and demonstrated substantial tumor-selective increases in blood-brain barrier (BBB) permeability in response to various-sized tracers ([14C]aminoisobutyric acid, [14C]sucrose, [14C]dextran). Internal carotid artery or intravenous administration of sodium nitrite had a comparable effect on BTB permeability. The NO effect on microvascular permeability could be obtained without causing hemodynamic side effects. The effect of NO on the efficacy of carboplatin chemotherapy was investigated in intracerebral C6 gliomas. Simultaneous intravenous infusions of Proli/NO (10−6 M) and carboplatin (20 mg/kg) led to long-term survival in 40% of rats harboring intracerebral C6 gliomas compared with control animals receiving ICA or intravenous infusions of carboplatin, Proli/NO, or vehicle alone. No residual tumor was demonstrated on histological or magnetic resonance imaging studies performed in rats treated with Proli/NO and carboplatin, and no toxicity was observed.

Conclusions. This new approach demonstrated the in vivo efficacy and safety of NO and nitrite in enhancing the delivery of systemically delivered radiolabeled tracers and carboplatin into rat gliomas. The NO-induced tumor-selective BBB disruption and intravenous carboplatin chemotherapy may be more efficacious than current chemotherapy strategies against brain tumors.

Full access

Ryszard M. Pluta, Scott D. Wait, John A. Butman, Kathleen A. Leppig, Alexander O. Vortmeyer, Edward H. Oldfield and Russell R. Lonser

Hemangioblastomas are histologically benign neoplasms that occur sporadically or as part of von Hippel–Lindau disease. Hemangioblastomas may occur anywhere along the neuraxis, but sacral hemangioblastomas are extremely rare. To identify features that will help guide the operative and clinical management of these lesions, the authors describe the management of a large von Hippel–Lindau disease–associated sacral hemangioblastoma and review the literature.

The authors present the case of a 38-year-old woman with von Hippel–Lindau disease and a 10-year history of progressive back pain, as well as left lower-extremity pain and numbness. Neurological examination revealed decreased sensation in the left S-1 and S-2 dermatomes. Magnetic resonance imaging demonstrated a large enhancing lesion in the sacral region, with associated erosion of the sacrum. The patient underwent arteriography and embolization of the tumor and then resection. The histopathological diagnosis was consistent with hemangioblastoma and showed intrafascicular tumor infiltration of the S-2 nerve root. At 1-year follow-up examination, pain had resolved and numbness improved.

Sacral nerve root hemangioblastomas may be safely removed in most patients, resulting in stabilization or improvement in symptomatology. Generally, hemangioblastomas of the sacral nerve roots should be removed when they cause symptoms. Because they originate from the nerve root, the nerve root from which the hemangioblastoma originates must be sacrificed to achieve complete resection.