You are looking at 91 - 100 of 213 items for

  • By Author: Oldfield, Edward H. x
Clear All
Restricted access

Russell R. Lonser, Scott D. Wait, John A. Butman, Alexander O. Vortmeyer, McClellan M. Walther, Lance S. Governale and Edward H. Oldfield


Hemangioblastomas in the lumbosacral region are rare, and the authors of prior reports have not defined the surgical management, histopathological features, or outcome in a group of patients after resection of these tumors. To identify features that will help guide the operative and clinical management of these lesions, the authors reviewed data obtained in a series of patients with von Hippel—Lindau syndrome who underwent resection of lumbosacral nerve root hemangioblastomas.


Six consecutive patients (three men and three women; mean age at surgery 39 years [range 31–48 years]) who underwent operations for resection of lumbosacral nerve root hemangioblastomas were included in this study. The mean follow-up period was 23 months (range 6–45 months). Data derived from examination, hospital charts, operative findings, histopathological analysis, and magnetic resonance imaging were used to analyze surgical management and clinical outcome. The resected tumors were located in the lumbar (five cases) or sacral (one case) regions; the mean tumor size was 2728 mm3 (range 80–15,022 mm3). Consistent with central nervous system (CNS) regional variation of space available to accommodate the neural compressive effect of the hemangioblastoma size, the mean tumor volume (2728 mm3) of these symptomatic lesions was much larger than that of symptomatic hemangioblastomas resected in the other regions of the CNS. Histopathological examination showed infiltration of the associated nerve root by the hemangioblastoma in each case. In five of the six patients complete resection was achieved, and in one patient intradural exploration of two hemangioblastomas was performed, but resection was not achieved because of motor root involvement. In all cases involving complete resections the patients experienced symptomatic improvement.


Lumbosacral nerve root hemangioblastomas can be safely removed in most patients with von Hippel—Lindau syndrome. Generally, hemangioblastomas of the lumbosacral nerve roots should be resected when they become symptomatic. Because these neoplasms appear to originate from the nerve root, it is necessary to sacrifice the nerve root from which the hemangioblastoma originates to achieve complete resection.

Restricted access

Edward H. Oldfield

Restricted access

Tung T. Nguyen, Yashdip S. Pannu, Cynthia Sung, Robert L. Dedrick, Stuart Walbridge, Martin W. Brechbiel, Kayhan Garmestani, Markus Beitzel, Alexander T. Yordanov and Edward H. Oldfield

Object. Convection-enhanced delivery (CED), the delivery and distribution of drugs by the slow bulk movement of fluid in the extracellular space, allows delivery of therapeutic agents to large volumes of the brain at relatively uniform concentrations. This mode of drug delivery offers great potential for the treatment of many neurological disorders, including brain tumors, neurodegenerative diseases, and seizure disorders. An analysis of the treatment efficacy and toxicity of this approach requires confirmation that the infusion is distributed to the targeted region and that the drug concentrations are in the therapeutic range.

Methods. To confirm accurate delivery of therapeutic agents during CED and to monitor the extent of infusion in real time, albumin-linked surrogate tracers that are visible on images obtained using noninvasive techniques (iopanoic acid [IPA] for computerized tomography [CT] and Gd—diethylenetriamine pentaacetic acid for magnetic resonance [MR] imaging) were developed and investigated for their usefulness as surrogate tracers during convective distribution of a macromolecule. The authors infused albumin-linked tracers into the cerebral hemispheres of monkeys and measured the volumes of distribution by using CT and MR imaging. The distribution volumes measured by imaging were compared with tissue volumes measured using quantitative autoradiography with [14C]bovine serum albumin coinfused with the surrogate tracer. For in vivo determination of tracer concentration, the authors examined the correlation between the concentration of the tracer in brain homogenate standards and CT Hounsfield units. They also investigated the long-term effects of the surrogate tracer for CT scanning, IPA-albumin, on animal behavior, the histological characteristics of the tissue, and parenchymal toxicity after cerebral infusion.

Conclusions. Distribution of a macromolecule to clinically significant volumes in the brain is possible using convection. The spatial dimensions of the tissue distribution can be accurately defined in vivo during infusion by using surrogate tracers and conventional imaging techniques, and it is expected that it will be possible to determine local concentrations of surrogate tracers in voxels of tissue in vivo by using CT scanning. Use of imaging surrogate tracers is a practical, safe, and essential tool for establishing treatment volumes during high-flow interstitial microinfusion of the central nervous system.

Restricted access

Charles A. Sansur, John D. Heiss, Hetty L. DeVroom, Eric Eskioglu, Robert Ennis and Edward H. Oldfield

Object. The aim of this study was to evaluate the pathophysiology underlying headache associated with cough in patients with Chiari I tonsillar abnormality. The authors hypothesized that peak intrathecal pressure during coughing is higher in patients with headache aggravated by cough than in patients without or in healthy volunteers. In addition, the authors evaluated the use of intrathecal pressure during cough as a means of assessing obstruction to the free flow of cerebrospinal fluid (CSF) at the craniocervical junction.

Methods. Twenty-six adult patients with Chiari I malformation and syringomyelia, four adult patients with Chiari I malformation without syringomyelia, and 15 healthy volunteers were prospectively studied. Testing before surgery included the following: 1) clinical evaluation for the presence of headache associated with cough; and 2) evaluation of lumbar subarachnoid pressure at rest, during three to five coughs, while performing the Valsalva maneuver, during jugular compression, and after removal of CSF. Patients underwent suboccipital craniectomy, C-1 laminectomy, and duraplasty. Testing was repeated 6 months after surgery.

Conclusions. Peak intrathecal pressures during cough and at baseline were elevated in patients with headache associated with cough compared with either patients without headache or healthy volunteers. After surgery, intrathecal pressures during cough were significantly lower than preoperative values and headache aggravated by cough was resolved partially or completely. Headache linked to coughing in patients with Chiari I malformation is associated with sudden increased intrathecal pressure caused by obstruction to the free flow of CSF in the subarachnoid space.

Restricted access

Ryszard M. Pluta, Brian Iuliano, Hetty L. Devroom, Tung Nguyen and Edward H. Oldfield

Object. Von Hippel—Lindau (VHL) disease is an autosomal-dominant neoplastic syndrome with manifestations in multiple organs, which is evoked by the deletion or mutation of a tumor suppressor gene on chromosome 3p25. Spinal hemangioblastomas (40% of VHL disease—associated lesions of the central nervous system) arise predominantly in the posterior aspect of the spinal cord and are often associated with an intraspinal cyst. Rarely, the tumor develops in the anterior aspect of the spinal cord. Ventral spinal hemangioblastomas are a surgical challenge because of difficult access and because vessels feeding the tumor originate from the anterior spinal artery.

The goal of this study was to clarify whether an anterior or posterior surgical approach is better for management of hemangioblastomas of the ventral spinal cord.

Methods. The authors performed a retrospective analysis of clinical outcomes and findings on magnetic resonance (MR) imaging studies in eight patients (two women and six men with a mean age of 34 ± 15 years) who underwent resection of ventral spinal hemangioblastomas (nine tumors: five cervical and four thoracic). Two surgical approaches were used to resect these tumors. A posterior approach was selected to treat five patients (laminectomy and posterior myelotomy in four patients and the posterolateral approach in one patient); an anterior approach (corpectomy and arthrodesis) was selected to treat the remaining three patients.

Immediately after surgery, the ability to ambulate remained unchanged in patients in whom an anterior approach had been performed, but deteriorated significantly in patients in whom a posterior approach had been used, because of motor weakness (four of five patients) and/or proprioceptive sensory loss (three of five patients). This difference in ambulation, despite significant improvements over time among patients in the posterior access group, remained significant 6 months after surgery. In all cases, MR images revealed complete resection of the tumor and in five patients significant or complete resolution of the intramedullary cyst was demonstrated (present in six of eight patients).

Conclusions. The outcomes of these eight patients with hemangioblastomas of the ventral spinal cord indicate that both immediate and long-term results are better when an anterior approach is selected for resection.

Restricted access

John E. Wanebo, Russell R. Lonser, Gladys M. Glenn and Edward H. Oldfield

Object. The goals of this study were to define the natural history and growth pattern of hemangioblastomas of the central nervous system (CNS) that are associated with von Hippel—Lindau (VHL) disease and to correlate features of hemangioblastomas that are associated with the development of symptoms and the need for treatment.

Methods. The authors reviewed serial magnetic resonance images and clinical histories of 160 consecutive patients with VHL disease who harbored CNS hemangioblastomas and serially measured the volumes of tumors and associated cysts.

Six hundred fifty-five hemangioblastomas were identified in the cerebellum (250 tumors), brainstem (64 tumors, all of which were located in the posterior medulla oblongata), spinal cord (331 tumors, 96% of which were located in the posterior half of spinal cord), and the supratentorial brain (10 tumors). The symptoms were related to a mass effect. A serial increase in hemangioblastoma size was observed in cerebellar, brainstem, and spinal cord tumors as patients progressed from being asymptomatic to symptomatic and requiring surgery (p < 0.0001). Twenty-one (72%) of 29 symptom-producing cerebellar tumors had an associated cyst, whereas only 28 (13%) of 221 nonsymptomatic cerebellar tumors had tumor-associated cysts (p < 0.0001). Nine (75%) of 12 symptomatic brainstem tumors had associated cysts, compared with only four (8%) of 52 nonsymptomatic brainstem lesions (p < 0.0001). By the time the symptoms appeared and surgery was required, the cyst was larger than the causative tumor; cerebellar and brainstem cysts measured 34 and 19 times the size of their associated tumors at surgery, respectively. Ninety-five percent of symptom-producing spinal hemangioblastomas were associated with syringomyelia.

The clinical circumstance was dynamic. Among the 88 patients who had undergone serial imaging for 6 months or longer (median 32 months), 164 (44%) of 373 hemangioblastomas and 37 (67%) of 55 tumor-associated cysts enlarged. No tumors or cysts spontaneously diminished in size. Symptomatic cerebellar and brainstem tumors grew at rates six and nine times greater, respectively, than asymptomatic tumors in the same regions. Cysts enlarged seven (cerebellum) and 15 (brainstem) times faster than the hemangioblastomas causing them. Hemangioblastomas frequently demonstrated a pattern of growth in which they would enlarge for a period of time (growth phase) and then stabilize in a period of arrested growth (quiescent phase). Of 69 patients with documented tumor growth, 18 (26%) harbored tumors with at least two growth phases. Of 160 patients with hemangioblastomas, 34 patients (median follow up 51 months) were found to have 115 new hemangioblastomas and 15 patients new tumor-associated cysts.

Conclusions. In this study the authors define the natural history of CNS hemangioblastomas associated with VHL disease. Not only were cysts commonly associated with cerebellar, brainstem, and spinal hemangioblastomas, the pace of enlargement was much faster for cysts than for hemangioblastomas. By the time symptoms appeared, the majority of mass effect—producing symptoms derived from the cyst, rather than from the tumor causing the cyst. These tumors often have multiple periods of tumor growth separated by periods of arrested growth, and many untreated tumors may remain the same size for several years. These characteristics must be considered when determining the optimal timing of screening for individual patients and for evaluating the timing and results of treatment.

Restricted access

Robert J. Weil, Russell R. Lonser, Hetty L. Devroom, John E. Wanebo and Edward H. Oldfield

Object. Hemangioblastomas of the brainstem constitute 5 to 10% of central nervous system (CNS) tumors in patients with von Hippel—Lindau (VHL) disease. At present, optimal management of brainstem hemangioblastomas associated with VHL disease is incompletely defined. In an attempt to clarify some of the uncertainty about the operative treatment of these lesions and its outcome, the authors reviewed all cases of VHL disease in which resection of brainstem hemangioblastomas was performed at the National Institutes of Health during a 10-year period.

Methods. Twelve consecutive patients with VHL disease (six male and six female patients [mean age 31.7 ± 9 years; range 15–46 years]) who underwent 13 operations to remove 17 brainstem hemangioblastomas were included in this study (mean follow-up period, 88.4 ± 37.4 months; range 37–144 months). Serial examinations, hospital charts, magnetic resonance images, and operative records were reviewed. To evaluate clinical course, clinical grades were assigned to each patient before and after surgery.

Preoperative neurological function was the best predictor of long-term outcome. In addition, patients who underwent CNS surgeries for hemangioblastomas were more likely to improve or to remain neurologically stable. Tumor or cyst size, the presence of a cyst, or the location of the tumor (intramedullary, extramedullary, or mixed; posterior medullary, obex, or lateral) did not affect outcome. No patient was neurologically worse after brainstem surgery. At long-term follow-up review (mean 88.4 months), only one patient had declined neurologically and this was due to the cumulative neurological effects caused by eight additional hemangioblastomas of the spinal cord and their surgical treatment.

Conclusions. Brainstem hemangioblastomas in patients with VHL disease can be removed safely; they generally should be resected when they become symptomatic or when the tumor has reached a size such that further growth will increase the risks associated with surgery, or in the presence of an enlarging cyst. Magnetic resonance imaging is usually sufficient for preoperative evaluation and presurgical embolization is unnecessary. The goal of surgery is complete resection of the lesion before the patient experiences a disabling neurological deficit.

Restricted access

Russell R. Lonser, Robert J. Weil, John E. Wanebo, Hetty L. Devroom and Edward H. Oldfield

Object. Von Hippel—Lindau (VHL) disease is an autosomal-dominant disorder frequently associated with hemangioblastomas of the spinal cord. Because of the slow progression, protean nature, and high frequency of multiple spinal hemangioblastomas associated with VHL disease, the surgical management of these lesions is complex. Because prior reports have not identified the factors that predict which patients with spinal cord hemangioblastomas need surgery or what outcomes of this procedure should be expected, the authors have reviewed a series of patients with VHL disease who underwent resection of spinal hemangioblastomas at a single institution to identify features that might guide surgical management of these patients.

Methods. Forty-four consecutive patients with VHL disease (26 men and 18 women) who underwent 55 operations with resection of 86 spinal cord hemangioblastomas (mean age at surgery 34 years; range 20–58 years) at the National Institutes of Health were included in this study (mean clinical follow up 44 months). Patient examination, review of hospital charts, operative findings, and magnetic resonance imaging studies were used to analyze surgical management and its outcome. To evaluate the clinical course, clinical grades were assigned to patients before and after surgery. Preoperative neurological status, tumor size, and tumor location were predictive of postoperative outcome. Patients with no or minimal preoperative neurological dysfunction, with lesions smaller than 500 mm3, and with dorsal lesions were more likely to have no or minimal neurological impairment. Syrinx resolution was the result of tumor removal and was not influenced by whether the syrinx cavity was entered.

Conclusions. Spinal cord hemangioblastomas can be safely removed in the majority of patients with VHL disease. Generally in these patients, hemangioblastomas of the spinal cord should be removed when they produce symptoms or signs.

Restricted access

Rob D. Dickerman and Edward H. Oldfield

Object. The goal of this study was to establish the clinical importance of occult dural invasion—invasion of the dura mater or cavernous sinus that is not evident on imaging studies and is not obvious to the surgeon—as the basis of recurrent or persistent tumor and endocrinopathy.

Methods. The authors retrospectively reviewed the case files of patients who underwent repeated transsphenoidal surgery for resection of an adrenocorticotropic hormone (ACTH)—producing pituitary adenoma. Patient selection required the availability of operative and pathology reports from the initial and repeated transsphenoidal surgeries. Because no determination of the cause of persistent or recurrent disease could be made if the tumor could not be localized during the repeated surgery, a pathology report confirming the presence of tumor from the second surgery was also required.

Sixty-eight patients met these criteria. In 43 patients (63%) an ACTH-producing tumor was identified at the initial surgery, in 25 patients (37%) no tumor was found, and in three patients (4%) dural invasion was noted at surgery. In 49 (72%) of the 68 patients there was initial resolution of hypercortisolism and recurrent Cushing disease (CD), whereas in 19 patients (28%) there was persistent CD after the initial surgery. At repeated surgery (44 ± 35 months after the initial surgery) in all 43 patients in whom tumor had been identified at the initial surgery, the tumor was found at the same site or contiguous to the same site. Dural invasion was noted by the surgeon in only three patients at the original surgery, whereas dural invasion by an ACTH-producing tumor was identified during repeated surgery in 42 (62%) of the 68 patients. In addition, 39 (93%) of the 42 invasive adenomas were located laterally and involved the cavernous sinus. Adenomatous invasion of the dura mater was found in 31 (54%) of the 57 microadenomas and in all 11 macroadenomas at repeated surgery. The presence of tumor was not detected in 28 of the 59 patients studied with magnetic resonance (MR) imaging and in none of these 59 patients was dural invasion evident on MR images.

Conclusions. Recurrent and persistent CD consistently results from residual tumor. At repeated surgery the residual tumor can be found at or immediately contiguous to the site at which the tumor was found originally. Unappreciated dural invasion with growth of residual tumor within the cavernous sinus dura, which frequently occurs without residual tumor or dural invasion being evident on MR images or to the surgeon during surgery, is the basis of surgical failure in many patients with CD. Occult lateral dural invasion by tumor may also underlie recurrences of other types of pituitary adenomas.

Restricted access

Russell R. Lonser, Stuart Walbridge, Alexander O. Vortmeyer, Svetlana D. Pack, Tung T. Nguyen, Nitin Gogate, Jeffery J. Olson, Aytac Akbasak, R. Hunt Bobo, Thomas Goffman, Zhengping Zhuang and Edward H. Oldfield

Object. To determine the acute and long-term effects of a therapeutic dose of brain radiation in a primate model, the authors studied the clinical, laboratory, neuroimaging, molecular, and histological outcomes in rhesus monkeys that had received fractionated whole-brain radiation therapy (WBRT).

Methods. Twelve 3-year-old male primates (Macaca mulatta) underwent fractionated WBRT (350 cGy for 5 days/week for 2 weeks, total dose 3500 cGy). Animals were followed clinically and with laboratory studies and serial magnetic resonance (MR) imaging. They were killed when they developed medical problems or neurological symptoms, lesions appeared on MR imaging, or at study completion. Gross, histological, and molecular analyses were then performed.

Nine (82%) of 11 animals that underwent long-term follow up (> 2.5 years) developed neurological symptoms and/or enhancing lesions on MR imaging, which were defined as glioblastoma multiforme (GBM), 2.9 to 8.3 years after radiation therapy. The GBMs were categorized as either unifocal (three) or multifocal (six), and were located in the supratentorial (six), infratentorial (two), or both (one) cranial regions. Histological examination revealed distant, noncontiguous tumor invasion within the white matter of all nine animals harboring GBMs. Novel interspecies comparative genomic hybridization (three animals) uniformly showed deletions in the GBMs that corresponded to chromosome 9 in humans.

Conclusions. The high rate of GBM formation (82%) following a therapeutic dose of WBRT in nonhuman primates indicates that radioinduction of these neoplasms as a late complication of this therapy may occur more frequently than is currently recognized in human patients. The development of these tumors while monitoring the monkeys' conditions with clinical and serial MR imaging studies, and access to the tumor and the entire brain for histological and molecular analyses offers an opportunity to gather unique insights into the nature and development of GBMs.