Browse

You are looking at 1 - 3 of 3 items for

  • By Author: O’Neill, Nora P. x
Clear All
Restricted access

Lara L. Cohen, Brian W. Yang, Nora P. O’Neill, Mark R. Proctor, Michael P. Glotzbecker and Daniel J. Hedequist

OBJECTIVE

Patients with trisomy 21 (Down syndrome; DS) often have atlantoaxial instability (AAI), which, if severe, causes myelopathy and neurological deterioration. Children with DS and AAI who undergo cervical spine fusion have a high rate of nonunion requiring revision surgery. Recombinant human bone morphogenetic protein–2 (rhBMP-2) is a TGF-β growth factor that is used to induce bone formation in spine fusion. Although previous studies in the adult population have reported no reduction in pseudarthrosis rates with the use of rhBMP-2, there is a lack of literature in the pediatric DS population. This study describes the use of rhBMP-2 in children with DS and AAI during revision to treat nonunion.

METHODS

A retrospective review of a cervical spine fusion database (n = 175) was conducted. This database included all cervical spine fusions using modern instrumentation at the authors’ institution from 2002 to 2019. Patients with DS who underwent a revision utilizing rhBMP-2 were included in the study. The number of prior fusions, use of rhBMP-2 in fusions, length of stay, halo use, and surgical data were collected. Postoperative complications and length of follow-up were also recorded.

RESULTS

Eight patients (75% female) met the inclusion criteria. The average age at revision with rhBMP-2 was 11 years (range 3–19 years). All patients were diagnosed with nonunion after an initial cervical fusion. All revisions were posterior fusions of C1–2 (n = 2) or occiput to cervical (n = 6). All revisions included implant revisions, iliac crest bone grafting, and rhBMP-2 use. One patient required irrigation and debridement of an rhBMP-induced seroma. Another patient required return to the operating room to repair a dural tear. There were no neurological, infectious, airway, or implant-related complications. Revision utilizing rhBMP-2 achieved fusion in 100% (n = 8) of patients. The average length of follow-up was 42.6 months. All patients demonstrated solid fusion mass on the last radiograph.

CONCLUSIONS

This is the first case series reporting the successful use of rhBMP-2 to facilitate cervical spine fusion in patients with DS after previous nonunion. In addition, few rhBMP-2–related postoperative complications occurred.

Restricted access

Bram P. Verhofste, Michael P. Glotzbecker, Craig M. Birch, Nora P. O’Neill and Daniel J. Hedequist

OBJECTIVE

Halo-gravity traction (HGT) is an effective and safe method for gradual correction of severe cervical deformities in adults. However, the literature is limited on the use of HGT for cervical spine deformities that develop in children. The objective of the present study was to evaluate the safety and efficacy of HGT for pediatric cervical spine deformities.

METHODS

Twenty-eight patients (18 females) whose mean age was 11.3 ± 5.58 years (range 2–24.9 years) underwent HGT. Common indications included kyphosis (n = 12), rotatory subluxation (n = 7), and basilar invagination (n = 6). Three children (11%) received traction to treat severe occipitocervical instability. For these 3 patients, traction combined with a halo vest, with bars attached rigidly to the vest, but with the ability to slide through the connections to the halo crown, was used to guide the corrective forces and moments in a specific and controlled manner. Patients ambulated with a wheelchair or halo walker under constant traction. Imaging was done before and during traction to evaluate traction efficacy. The modified Clavien-Dindo-Sink classification was used to categorize complications.

RESULTS

The mean duration of HGT was 25 days (IQR 13–29 days), and the mean traction was 29% ± 13.0% of body weight (IQR 19%–40% of body weight). The mean kyphosis improved from 91° ± 20.7° (range 64°–122°) to 56° ± 17.6° (range 32°–96°) during traction and corresponded to a mean percentage kyphosis correction of 38% ± 13.8% (range 21%–57%). Twenty-five patients (89%) underwent surgical stabilization, and 3 patients (11%) had rotatory subluxation that was adequately reduced by traction and were treated with a halo vest as their definitive treatment. The mean hospital stay was 35 days (IQR 17–43 days).

Nine complications (32%) occurred: 8 grade I complications (28%), including 4 cases of superficial pin-site infection (14%) and 4 cases of transient paresthesia (14%). One grade II complication (4%) was seen in a child with Down syndrome and a preexisting neurological deficit; this patient developed flaccid paralysis that rapidly resolved with weight removal. Six cases (21%) of temporary neck discomfort occurred as a sequela of a preexisting condition and resolved without treatment within 24–48 hours.

CONCLUSIONS

HGT in children is safe and effective for the gradual correction of cervical kyphosis, atlantoaxial subluxation, basilar invagination, and os odontoideum. Cervical traction is an additional tool for the pediatric spine surgeon if uncertainties exist that the spinal alignment required for internal fixation and deformity correction can be safely achieved surgically. Common complications included grade I complications such as superficial pin-site infections and transient paresthesias. Halo vest gravity traction may be warranted in patients with baseline neurological deficits and severe occipitocervical instability to reduce the chance of catastrophic movement.

Restricted access

Bram P. Verhofste, Michael P. Glotzbecker, Craig M. Birch, Nora P. O’Neill and Daniel J. Hedequist

OBJECTIVE

Halo-gravity traction (HGT) is an effective and safe method for gradual correction of severe cervical deformities in adults. However, the literature is limited on the use of HGT for cervical spine deformities that develop in children. The objective of the present study was to evaluate the safety and efficacy of HGT for pediatric cervical spine deformities.

METHODS

Twenty-eight patients (18 females) whose mean age was 11.3 ± 5.58 years (range 2–24.9 years) underwent HGT. Common indications included kyphosis (n = 12), rotatory subluxation (n = 7), and basilar invagination (n = 6). Three children (11%) received traction to treat severe occipitocervical instability. For these 3 patients, traction combined with a halo vest, with bars attached rigidly to the vest, but with the ability to slide through the connections to the halo crown, was used to guide the corrective forces and moments in a specific and controlled manner. Patients ambulated with a wheelchair or halo walker under constant traction. Imaging was done before and during traction to evaluate traction efficacy. The modified Clavien-Dindo-Sink classification was used to categorize complications.

RESULTS

The mean duration of HGT was 25 days (IQR 13–29 days), and the mean traction was 29% ± 13.0% of body weight (IQR 19%–40% of body weight). The mean kyphosis improved from 91° ± 20.7° (range 64°–122°) to 56° ± 17.6° (range 32°–96°) during traction and corresponded to a mean percentage kyphosis correction of 38% ± 13.8% (range 21%–57%). Twenty-five patients (89%) underwent surgical stabilization, and 3 patients (11%) had rotatory subluxation that was adequately reduced by traction and were treated with a halo vest as their definitive treatment. The mean hospital stay was 35 days (IQR 17–43 days).

Nine complications (32%) occurred: 8 grade I complications (28%), including 4 cases of superficial pin-site infection (14%) and 4 cases of transient paresthesia (14%). One grade II complication (4%) was seen in a child with Down syndrome and a preexisting neurological deficit; this patient developed flaccid paralysis that rapidly resolved with weight removal. Six cases (21%) of temporary neck discomfort occurred as a sequela of a preexisting condition and resolved without treatment within 24–48 hours.

CONCLUSIONS

HGT in children is safe and effective for the gradual correction of cervical kyphosis, atlantoaxial subluxation, basilar invagination, and os odontoideum. Cervical traction is an additional tool for the pediatric spine surgeon if uncertainties exist that the spinal alignment required for internal fixation and deformity correction can be safely achieved surgically. Common complications included grade I complications such as superficial pin-site infections and transient paresthesias. Halo vest gravity traction may be warranted in patients with baseline neurological deficits and severe occipitocervical instability to reduce the chance of catastrophic movement.