Browse

You are looking at 1 - 6 of 6 items for

  • By Author: Mikulis, David x
Clear All
Restricted access

Alexandre Boutet, Gavin J. B. Elias, Robert Gramer, Clemens Neudorfer, Jürgen Germann, Asma Naheed, Nicole Bennett, Bryan Li, Dave Gwun, Clement T. Chow, Ricardo Maciel, Alejandro Valencia, Alfonso Fasano, Renato P. Munhoz, Warren Foltz, David Mikulis, Ileana Hancu, Suneil K. Kalia, Mojgan Hodaie, Walter Kucharczyk and Andres M. Lozano

OBJECTIVE

Many centers are hesitant to perform clinically indicated MRI in patients who have undergone deep brain stimulation (DBS). Highly restrictive guidelines prohibit the use of most routine clinical MRI protocols in these patients. The authors’ goals were to assess the safety of spine MRI in patients with implanted DBS devices, first through phantom model testing and subsequently through validation in a DBS patient cohort.

METHODS

A phantom was used to assess DBS device heating during 1.5-T spine MRI. To establish a safe spine protocol, routinely used clinical sequences deemed unsafe (a rise in temperature > 2°C) were modified to decrease the rise in temperature. This safe phantom-based protocol was then used to prospectively run 67 spine MRI sequences in 9 DBS participants requiring clinical imaging. The primary outcome was acute adverse effects; secondary outcomes included long-term adverse clinical effects, acute findings on brain MRI, and device impedance stability.

RESULTS

The increases in temperature were highest when scanning the cervical spine and lowest when scanning the lumbar spine. A temperature rise < 2°C was achieved when 3D sequences were modified to 2D and when the number of slices was decreased by the minimum amount compared to routine spine MRI protocols (but there were still more slices than allowed by vendor guidelines). Following spine MRI, no acute or long-term adverse effects or acute findings on brain MR images were detected. Device impedances remained stable.

CONCLUSIONS

Patients with DBS devices may safely undergo spine MRI with a fewer number of slices compared to those used in routine clinical protocols. Safety data acquisition may allow protocols outside vendor guidelines with a maximized number of slices, reducing the need for radiologist supervision.

Clinical trial registration no.: NCT03753945 (ClinicalTrials.gov).

Restricted access

Alexandre Boutet, Gavin J. B. Elias, Robert Gramer, Clemens Neudorfer, Jürgen Germann, Asma Naheed, Nicole Bennett, Bryan Li, Dave Gwun, Clement T. Chow, Ricardo Maciel, Alejandro Valencia, Alfonso Fasano, Renato P. Munhoz, Warren Foltz, David Mikulis, Ileana Hancu, Suneil K. Kalia, Mojgan Hodaie, Walter Kucharczyk and Andres M. Lozano

OBJECTIVE

Many centers are hesitant to perform clinically indicated MRI in patients who have undergone deep brain stimulation (DBS). Highly restrictive guidelines prohibit the use of most routine clinical MRI protocols in these patients. The authors’ goals were to assess the safety of spine MRI in patients with implanted DBS devices, first through phantom model testing and subsequently through validation in a DBS patient cohort.

METHODS

A phantom was used to assess DBS device heating during 1.5-T spine MRI. To establish a safe spine protocol, routinely used clinical sequences deemed unsafe (a rise in temperature > 2°C) were modified to decrease the rise in temperature. This safe phantom-based protocol was then used to prospectively run 67 spine MRI sequences in 9 DBS participants requiring clinical imaging. The primary outcome was acute adverse effects; secondary outcomes included long-term adverse clinical effects, acute findings on brain MRI, and device impedance stability.

RESULTS

The increases in temperature were highest when scanning the cervical spine and lowest when scanning the lumbar spine. A temperature rise < 2°C was achieved when 3D sequences were modified to 2D and when the number of slices was decreased by the minimum amount compared to routine spine MRI protocols (but there were still more slices than allowed by vendor guidelines). Following spine MRI, no acute or long-term adverse effects or acute findings on brain MR images were detected. Device impedances remained stable.

CONCLUSIONS

Patients with DBS devices may safely undergo spine MRI with a fewer number of slices compared to those used in routine clinical protocols. Safety data acquisition may allow protocols outside vendor guidelines with a maximized number of slices, reducing the need for radiologist supervision.

Clinical trial registration no.: NCT03753945 (ClinicalTrials.gov).

Free access

Vibhor Krishna, Francesco Sammartino, Philip Yee, David Mikulis, Matthew Walker, Gavin Elias and Mojgan Hodaie

OBJECTIVE

The diagnosis of Chiari malformation Type I (CM-I) is primarily based on the degree of cerebellar tonsillar herniation even though it does not always correlate with symptoms. Neurological dysfunction in CM-I presumably results from brainstem compression. With the premise that conventional MRI does not reveal brain microstructural changes, this study examined both structural and microstructural neuroimaging metrics to distinguish patients with CM-I from age- and sex-matched healthy control subjects.

METHODS

Eight patients with CM-I and 16 controls were analyzed. Image postprocessing involved coregistration of anatomical T1-weighted with diffusion tensor images using 3D Slicer software. The structural parameters included volumes of the posterior fossa, fourth ventricle, and tentorial angle. Fractional anisotropy (FA) was calculated separately in the anterior and posterior compartments of the lower brainstem.

RESULTS

The mean age of patients in the CM-I cohort was 42.6 ± 10.4 years with mean tonsillar herniation of 12 mm (SD 0.7 mm). There were no significant differences in the posterior fossa volume (p = 0.06) or fourth ventricular volume between the 2 groups (p = 0.11). However, the FA in the anterior brainstem compartment was significantly higher in patients with CM-I preoperatively (p = 0.001). The FA values normalized after Chiari decompression except for persistently elevated FA in the posterior brainstem compartment in patients with CM-I and syrinx.

CONCLUSIONS

In this case-control study, microstructural alterations appear to be reliably associated with the diagnosis of CM-I, with a significantly elevated FA in the lower brainstem in patients with CM-I compared with controls. More importantly, the FA values normalized after decompressive surgery. These findings should be validated in future studies to determine the significance of diffusion tensor imaging–based assessment of brainstem microstructural integrity as an adjunct to the clinical assessment in patients with CM-I.

Free access

Aria Nouri, Allan R. Martin, David Mikulis and Michael G. Fehlings

Degenerative cervical myelopathy encompasses a spectrum of age-related structural changes of the cervical spine that result in static and dynamic injury to the spinal cord and collectively represent the most common cause of myelopathy in adults. Although cervical myelopathy is determined clinically, the diagnosis requires confirmation via imaging, and MRI is the preferred modality. Because of the heterogeneity of the condition and evolution of MRI technology, multiple techniques have been developed over the years in an attempt to quantify the degree of baseline severity and potential for neurological recovery. In this review, these techniques are categorized anatomically into those that focus on bone, ligaments, discs, and the spinal cord. In addition, measurements for the cervical spine canal size and sagittal alignment are also described briefly. These tools have resulted collectively in the identification of numerous useful parameters. However, the development of multiple techniques for assessing the same feature, such as cord compression, has also resulted in a number of challenges, including introducing ambiguity in terms of which methods to use and hindering effective comparisons of analysis in the literature. In addition, newer techniques that use advanced MRI are emerging and providing exciting new tools for assessing the spinal cord in patients with degenerative cervical myelopathy.

Restricted access

David W. Cadotte, Patrick W. Stroman, David Mikulis and Michael G. Fehlings

Object

Since the first published report of spinal functional MRI (fMRI) in humans in 1996, this body of literature has grown substantially. In the present article, the authors systematically review all spinal fMRI studies conducted in healthy individuals with a focus on the different motor and sensory paradigms used and the results acquired.

Methods

The authors conducted a systematic search of MEDLINE for literature published from 1990 through November 2011 reporting on stimulation paradigms used to assess spinal fMRI scans in healthy individuals.

Results

They identified 19 peer-reviewed studies from 1996 to the present in which a combination of different spinal fMRI methods were used to investigate the spinal cord in healthy individuals. Eight of the studies used a motor stimulation paradigm, 10 used a sensory stimulation paradigm, and 1 compared motor and sensory stimulation paradigms.

Conclusions

Despite differences in the results of various studies, even when similar stimulation paradigms were used, this body of literature underscores that spinal fMRI signals can be obtained from the human spinal cord. The authors intend this review to serve as an introduction to spinal fMRI research and what it may offer the field of spinal cord injury research.

Restricted access

Sagun K. Tuli, R. John Hurlbert, David Mikulis and J. F. Ross Fleming

✓ This 44-year-old man presented with a 4-year history of progressive spastic weakness of his legs. He was found to have epidural lipomatosis behind the thoracic spinal cord, and the nerve roots exited from the posterior and anterior midline planes of the dura, indicating a 90° rotation of the thoracic cord. Magnetic resonance images clearly demonstrated the segmental thoracic nerve roots exiting from the dorsal midline of the dura, a finding confirmed at surgery. The authors found only one previously published case of rotation of the spinal cord.

Directed mechanical stress caused by deformation of the rotated spinal cord, rather than compression from adipose tissue, is proposed as the mechanism of the myelopathy. The extent, location, and thickness of the associated extradural adipose tissue is suggestive of epidural lipomatosis. The lipomatous tissue might have been an epiphenomenon and cord rotation an isolated congenital anomaly. Alternatively, asymmetrical growth of epidural fat may have exerted torque, rotating the thecal sac.