Browse

You are looking at 1 - 10 of 69 items for

  • By Author: Lafage, Virginie x
Clear All
Restricted access

Michael Y. Wang, Stacie Tran, G. Damian Brusko, Robert Eastlack, Paul Park, Pierce D. Nunley, Adam S. Kanter, Juan S. Uribe, Neel Anand, David O. Okonkwo, Khoi D. Than, Christopher I. Shaffrey, Virginie Lafage, Gregory M. Mundis Jr., Praveen V. Mummaneni and the MIS-ISSG Group

OBJECTIVE

The past decade has seen major advances in techniques for treating more complex spinal disorders using minimally invasive surgery (MIS). While appealing from the standpoint of patient perioperative outcomes, a major impediment to adoption has been the significant learning curve in utilizing MIS techniques.

METHODS

Data were retrospectively analyzed from a multicenter series of adult spinal deformity surgeries treated at eight tertiary spine care centers in the period from 2008 to 2015. All patients had undergone a less invasive or hybrid approach for a deformity correction satisfying the following inclusion criteria at baseline: coronal Cobb angle ≥ 20°, sagittal vertical axis (SVA) > 5 cm, or pelvic tilt > 20°. Analyzed data included baseline demographic details, severity of deformity, surgical metrics, clinical outcomes (numeric rating scale [NRS] score and Oswestry Disability Index [ODI]), radiographic outcomes, and complications. A minimum follow-up of 2 years was required for study inclusion.

RESULTS

Across the 8-year study period, among 222 patients, there was a trend toward treating increasingly morbid patients, with the mean age increasing from 50.7 to 62.4 years (p = 0.013) and the BMI increasing from 25.5 to 31.4 kg/m2 (p = 0.12). There was no statistical difference in the severity of coronal and sagittal deformity treated over the study period. With regard to radiographic changes following surgery, there was an increasing emphasis on sagittal correction and, conversely, less coronal correction. There was no statistically significant difference in clinical outcomes over the 8-year period, and meaningful improvements were seen in all years (ODI range of improvement: 15.0–26.9). Neither were there statistically significant differences in major complications; however, minor complications were seen less often as the surgeons gained experience (p = 0.064). Operative time was decreased on average by 47% over the 8-year period.

Trends in surgical practice were seen as well. Total fusion construct length was unchanged until the last year when there was a marked decrease in conjunction with a decrease in interbody levels treated (p = 0.004) while obtaining a higher degree of sagittal correction, suggesting more selective but powerful interbody reduction methods as reflected by an increase in the lateral and anterior column resection techniques being utilized.

CONCLUSIONS

The use of minimally invasive methods for adult spinal deformity surgery has evolved over the past decade. Experienced surgeons are treating older and more morbid patients with similar outcomes. A reliance on selective, more powerful interbody approaches is increasing as well.

Restricted access

Nitin Agarwal, Federico Angriman, Ezequiel Goldschmidt, James Zhou, Adam S. Kanter, David O. Okonkwo, Peter G. Passias, Themistocles Protopsaltis, Virginie Lafage, Renaud Lafage, Frank Schwab, Shay Bess, Christopher Ames, Justin S. Smith, Christopher I. Shaffrey, Douglas Burton, D. Kojo Hamilton and the International Spine Study Group

OBJECTIVE

Obesity, a condition that is increasing in prevalence in the United States, has previously been associated with poorer outcomes following deformity surgery, including higher rates of perioperative complications such as deep and superficial infections. To date, however, no study has examined the relationship between preoperative BMI and outcomes of deformity surgery as measured by spine parameters such as the sagittal vertical axis (SVA), as well as health-related quality of life (HRQoL) measures such as the Oswestry Disability Index (ODI) and Scoliosis Research Society–22 patient questionnaire (SRS-22). To this end, the authors sought to clarify the relationship between BMI and postoperative change in SVA as well as HRQoL outcomes.

METHODS

The authors performed a retrospective review of a prospectively managed multicenter adult spinal deformity database collected and maintained by the International Spine Study Group (ISSG) between 2009 and 2014. The primary independent variable considered was preoperative BMI. The primary outcome was the change in SVA at 1 year after deformity surgery. Postoperative ODI and SRS-22 outcome measures were evaluated as secondary outcomes. Generalized linear models were used to model the primary and secondary outcomes at 1 year as a function of BMI at baseline, while adjusting for potential measured confounders.

RESULTS

Increasing BMI (compared to BMI < 18) was not associated with change of SVA at 1 year postsurgery. However, BMIs in the obese range of 30 to 34.9 kg/m2, compared to BMI < 18 at baseline, were associated with poorer outcomes as measured by the SRS-22 score (estimated change −0.47, 95% CI −0.93 to −0.01, p = 0.04). While BMIs > 30 appeared to be associated with poorer outcomes as determined by the ODI, this correlation did not reach statistical significance.

CONCLUSIONS

Baseline BMI did not affect the achievable SVA at 1 year postsurgery. Further studies should evaluate whether even in the absence of a change in SVA, baseline BMIs in the obese range are associated with worsened HRQoL outcomes after spinal surgery.

Restricted access

Ferran Pellisé, Miquel Serra-Burriel, Justin S. Smith, Sleiman Haddad, Michael P. Kelly, Alba Vila-Casademunt, Francisco Javier Sánchez Pérez-Grueso, Shay Bess, Jeffrey L. Gum, Douglas C. Burton, Emre Acaroğlu, Frank Kleinstück, Virginie Lafage, Ibrahim Obeid, Frank Schwab, Christopher I. Shaffrey, Ahmet Alanay, Christopher Ames, the International Spine Study Group and the European Spine Study Group

OBJECTIVE

Adult spinal deformity (ASD) surgery has a high rate of major complications (MCs). Public information about adverse outcomes is currently limited to registry average estimates. The object of this study was to assess the incidence of adverse events after ASD surgery, and to develop and validate a prognostic tool for the time-to-event risk of MC, hospital readmission (RA), and unplanned reoperation (RO).

METHODS

Two models per outcome, created with a random survival forest algorithm, were trained in an 80% random split and tested in the remaining 20%. Two independent prospective multicenter ASD databases, originating from the European continent and the United States, were queried, merged, and analyzed. ASD patients surgically treated by 57 surgeons at 23 sites in 5 countries in the period from 2008 to 2016 were included in the analysis.

RESULTS

The final sample consisted of 1612 ASD patients: mean (standard deviation) age 56.7 (17.4) years, 76.6% women, 10.4 (4.3) fused vertebral levels, 55.1% of patients with pelvic fixation, 2047.9 observation-years. Kaplan-Meier estimates showed that 12.1% of patients had at least one MC at 10 days after surgery; 21.5%, at 90 days; and 36%, at 2 years. Discrimination, measured as the concordance statistic, was up to 71.7% (95% CI 68%–75%) in the development sample for the postoperative complications model. Surgical invasiveness, age, magnitude of deformity, and frailty were the strongest predictors of MCs. Individual cumulative risk estimates at 2 years ranged from 3.9% to 74.1% for MCs, from 3.17% to 44.2% for RAs, and from 2.67% to 51.9% for ROs.

CONCLUSIONS

The creation of accurate prognostic models for the occurrence and timing of MCs, RAs, and ROs following ASD surgery is possible. The presented variability in patient risk profiles alongside the discrimination and calibration of the models highlights the potential benefits of obtaining time-to-event risk estimates for patients and clinicians.

Restricted access

Michael P. Kelly, Michael A. Kallen, Christopher I. Shaffrey, Justin S. Smith, Douglas C. Burton, Christopher P. Ames, Virginie Lafage, Frank J. Schwab, Han Jo Kim, Eric O. Klineberg, Shay Bess and the International Spine Study Group

OBJECTIVE

After using PROsetta Stone crosswalk tables to calculate Patient-Reported Outcomes Measurement Information System (PROMIS) Physical Function (PF) and Pain Interference (PI) scores, the authors sought to examine 1) correlations with Scoliosis Research Society–22r (SRS-22r) scores, 2) responsiveness to change, and 3) the relationship between baseline scores and 2-year follow-up scores in adult spinal deformity (ASD).

METHODS

PROsetta Stone crosswalk tables were used to converted SF-36 scores to PROMIS scores for pain and physical function in a cohort of ASD patients with 2-year follow-up. Spearman correlations were used to evaluate the relationship of PROMIS scores with SRS-22r scores. Effect size (ES) and adjusted standardized response mean (aSRM) were used to assess responsiveness to change. Linear regression was used to evaluate the association between baseline scores and 2-year follow-up scores.

RESULTS

In total, 425 (425/625, 68%) patients met inclusion criteria. Strong correlations (all |r| > 0.7, p < 0.001) were found between baseline and 2-year PROMIS values and corresponding SRS-22r domain scores. PROMIS-PI showed a large ES (1.09) and aSRM (0.88), indicating good responsiveness to change. PROMIS-PF showed a moderate ES (0.52) and moderate aSRM (0.69), indicating a moderate responsiveness to change. Patients with greater baseline pain complaints were associated with greater pain improvement at 2 years for both SRS-22r Pain (B = 0.39, p < 0.001) and PROMIS-PI (B = 0.45, p < 0.001). Higher functional scores at baseline were associated with greater average improvements in both SRS-22r Activity (B = 0.62, p < 0.001) and PROMIS-PF (B = 0.40, p < 0.001).

CONCLUSIONS

The authors found strong correlations between the SRS-22r Pain and Activity domains with corresponding PROMIS-PI and -PF scores. Pain measurements showed similar and strong ES and aSRM while the function measurements showed similar, moderate ES and aSRM at 2-year follow-up. These data support further exploration of the use of PROMIS–computer adaptive test instruments in ASD.

Restricted access

Thomas J. Buell, Shay Bess, Ming Xu, Frank J. Schwab, Virginie Lafage, Christopher P. Ames, Christopher I. Shaffrey and Justin S. Smith

OBJECTIVE

Proximal junctional kyphosis (PJK) is, in part, due to altered segmental biomechanics at the junction of rigid instrumented spine and relatively hypermobile non-instrumented adjacent segments. Proper application of posteriorly anchored polyethylene tethers (i.e., optimal configuration and tension) may mitigate adjacent-segment stress and help prevent PJK. The purpose of this study was to investigate the impact of different tether configurations and tensioning (preloading) on junctional range-of-motion (ROM) and other biomechanical indices for PJK in long instrumented spine constructs.

METHODS

Using a validated finite element model of a T7–L5 spine segment, testing was performed on intact spine, a multilevel posterior screw-rod construct (PS construct; T11–L5) without tether, and 15 PS constructs with different tether configurations that varied according to 1) proximal tether fixation of upper instrumented vertebra +1 (UIV+1) and/or UIV+2; 2) distal tether fixation to UIV, to UIV−1, or to rods; and 3) use of a loop (single proximal fixation) or weave (UIV and/or UIV+1 fixation in addition to UIV+1 and/or UIV+2 proximal attachment) of the tether. Segmental ROM, intradiscal pressure (IDP), inter- and supraspinous ligament (ISL/SSL) forces, and screw loads were assessed under variable tether preload.

RESULTS

PS construct junctional ROM increased abruptly from 10% (T11–12) to 99% (T10–11) of baseline. After tethers were grouped by most cranial proximal fixation (UIV+1 vs UIV+2) and use of loop versus weave, UIV+2 Loop and/or Weave most effectively dampened junctional ROM and adjacent-segment stress. Different distal fixation and use of loop versus weave had minimal effect. The mean segmental ROM at T11–12, T10–11, and T9–10, respectively, was 6%, 40%, and 99% for UIV+1 Loop; 6%, 44%, and 99% for UIV+1 Weave; 5%, 23%, and 26% for UIV+2 Loop; and 5%, 24%, and 31% for UIV+2 Weave.

Tethers shared loads with posterior ligaments; consequently, increasing tether preload tension reduced ISL/SSL forces, but screw loads increased. Further attenuation of junctional ROM and IDP reversed above approximately 100 N tether preload, suggesting diminished benefit for biomechanical PJK prophylaxis at higher preload tensioning.

CONCLUSIONS

In this study, finite element analysis demonstrated UIV+2 Loop and/or Weave tether configurations most effectively mitigated adjacent-segment stress in long instrumented spine constructs. Tether preload dampened ligament forces at the expense of screw loads, and an inflection point (approximately 100 N) was demonstrated above which junctional ROM and IDP worsened (i.e., avoid over-tightening tethers). Results suggest tether configuration and tension influence PJK biomechanics and further clinical research is warranted.

Restricted access

Ziad Bakouny, Nour Khalil, Joeffroy Otayek, Aren Joe Bizdikian, Fares Yared, Michel Salameh, Naji Bou Zeid, Ismat Ghanem, Khalil Kharrat, Gaby Kreichati, Renaud Lafage, Virginie Lafage and Ayman Assi

OBJECTIVE

The Ames–International Spine Study Group (ISSG) classification has recently been proposed as a tool for adult cervical deformity evaluation. This classification includes three radiographic cervical sagittal modifiers that have not been evaluated in asymptomatic adults. The aim of this study was to determine whether the sagittal radiographic modifiers described in the Ames-ISSG cervical classification are encountered in asymptomatic adults without alteration of health-related quality of life (HRQOL).

METHODS

The authors conducted a cross-sectional study of subjects with an age ≥ 18 years and no cervical or back-related complaints or history of orthopedic surgery. All subjects underwent full-body biplanar radiographs with the measurement of cervical, segmental, and global alignment and completed the SF-36 HRQOL questionnaire. Subjects were classified according to the sagittal radiographic modifiers (chin-brow vertical angle [CBVA], mismatch between T1 slope and cervical lordosis [TS-CL], and C2–7 sagittal vertical axis [cSVA]) of the Ames–ISSG classification for cervical deformity, which also includes a qualitative descriptor of cervical deformity, the modified Japanese Orthopaedic Association (mJOA) myelopathy score, and the Scoliosis Research Society (SRS)–Schwab classification for spinal deformity assessment. Characteristics of the subjects classified by the different modifier grades were compared.

RESULTS

One hundred forty-one asymptomatic subjects (ages 18–59 years, 71 females) were enrolled in the study. Twenty-seven (19.1%) and 61 (43.3%) subjects were classified as grade 1 in terms of the TS-CL and CBVA modifiers, respectively. Ninety-eight (69.5%) and 4 (2.8%) were grade 2 for these same respective modifiers. One hundred thirty-six (96.5%) subjects had at least one modifier at grade 1 or 2. There was a significant relationship between patient age and grades of TS-CL (p < 0.001, Cramer’s V [CV] = 0.32) and CBVA (p = 0.04, CV = 0.22) modifiers. The HRQOL, global alignment, and segmental alignment parameters were similar among the subjects with different modifier grades (p > 0.05).

CONCLUSIONS

The CBVA and TS-CL radiographic modifiers of the Ames-ISSG classification do not seem to be specific to subjects with cervical deformities and can occur in asymptomatic subjects without alteration in HRQOL.

Free access

Justin K. Scheer, Taemin Oh, Justin S. Smith, Christopher I. Shaffrey, Alan H. Daniels, Daniel M. Sciubba, D. Kojo Hamilton, Themistocles S. Protopsaltis, Peter G. Passias, Robert A. Hart, Douglas C. Burton, Shay Bess, Renaud Lafage, Virginie Lafage, Frank Schwab, Eric O. Klineberg, Christopher P. Ames and the International Spine Study Group

OBJECTIVE

Pseudarthrosis can occur following adult spinal deformity (ASD) surgery and can lead to instrumentation failure, recurrent pain, and ultimately revision surgery. In addition, it is one of the most expensive complications of ASD surgery. Risk factors contributing to pseudarthrosis in ASD have been described; however, a preoperative model predicting the development of pseudarthrosis does not exist. The goal of this study was to create a preoperative predictive model for pseudarthrosis based on demographic, radiographic, and surgical factors.

METHODS

A retrospective review of a prospectively maintained, multicenter ASD database was conducted. Study inclusion criteria consisted of adult patients (age ≥ 18 years) with spinal deformity and surgery for the ASD. From among 82 variables assessed, 21 were used for model building after applying collinearity testing, redundancy, and univariable predictor importance ≥ 0.90. Variables included demographic data along with comorbidities, modifiable surgical variables, baseline coronal and sagittal radiographic parameters, and baseline scores for health-related quality of life measures. Patients groups were determined according to their Lenke radiographic fusion type at the 2-year follow-up: bilateral or unilateral fusion (union) or pseudarthrosis (nonunion). A decision tree was constructed, and internal validation was accomplished via bootstrapped training and testing data sets. Accuracy and the area under the receiver operating characteristic curve (AUC) were calculated to evaluate the model.

RESULTS

A total of 336 patients were included in the study (nonunion: 105, union: 231). The model was 91.3% accurate with an AUC of 0.94. From 82 initial variables, the top 21 covered a wide range of areas including preoperative alignment, comorbidities, patient demographics, and surgical use of graft material.

CONCLUSIONS

A model for predicting the development of pseudarthrosis at the 2-year follow-up was successfully created. This model is the first of its kind for complex predictive analytics in the development of pseudarthrosis for patients with ASD undergoing surgical correction and can aid in clinical decision-making for potential preventative strategies.

Restricted access

Michael Akbar, Haidara Almansour, Renaud Lafage, Bassel G. Diebo, Bernd Wiedenhöfer, Frank Schwab, Virginie Lafage and Wojciech Pepke

OBJECTIVE

The goal of this study was to investigate the impact of thoracic and lumbar alignment on cervical alignment in patients with adolescent idiopathic scoliosis (AIS).

METHODS

Eighty-one patients with AIS who had a Cobb angle > 40° and full-length spine radiographs were included. Radiographs were analyzed using dedicated software to measure pelvic parameters (sacral slope [SS], pelvic incidence [PI], pelvic tilt [PT]); regional parameters (C1 slope, C0–C2 angle, chin-brow vertical angle [CBVA], slope of line of sight [SLS], McRae slope, McGregor slope [MGS], C2–7 [cervical lordosis; CL], C2–7 sagittal vertical axis [SVA], C2–T3, C2–T3 SVA, C2–T1 Harrison measurement [C2–T1 Ha], T1 slope, thoracic kyphosis [TK], lumbar lordosis [LL], and PI-LL mismatch); and global parameters (SVA). Patients were stratified by their lumbar alignment into hyperlordotic (LL > 59.7°) and normolordotic (LL 39.3° to 59.7°) groups and also, based on their thoracic alignment, into hypokyphotic (TK < −33.1°) and normokyphotic (TK −33.1° to −54.9°) groups. Finally, they were grouped based on their global alignment into either an anterior-aligned group or a posterior-aligned group.

RESULTS

The lumbar hyperlordotic group, in comparison to the normolordotic group, had a significantly larger LL, SS, PI (all p < 0.001), and TK (p = 0.014) and a significantly smaller PI-LL mismatch (p = 0.001). Lumbar lordosis had no influence on local cervical parameters.

The thoracic hypokyphotic group had a significantly larger PI-LL mismatch (p < 0.002) and smaller T1 slope (p < 0.001), and was significantly more posteriorly aligned than the normokyphotic group (−15.02 ± 8.04 vs 13.54 ± 6.17 [mean ± SEM], p = 0.006). The patients with hypokyphotic AIS had a kyphotic cervical spine (cervical kyphosis [CK]) (p < 0.001). Furthermore, a posterior-aligned cervical spine in terms of C2–7 SVA (p < 0.006) and C2–T3 SVA (p < 0.001) was observed in the thoracic hypokyphotic group.

Comparing patients in terms of global alignment, the posterior-aligned group had a significantly smaller T1 slope (p < 0.001), without any difference in terms of pelvic, lumbar, and thoracic parameters when compared to the anterior-aligned group. The posterior-aligned group also had a CK (−9.20 ± 1.91 vs 5.21 ± 2.95 [mean ± SEM], p < 0.001) and a more posterior-aligned cervical spine, as measured by C2–7 SVA (p = 0.003) and C2–T3 SVA (p < 0.001).

CONCLUSIONS

Alignment of the cervical spine is closely related to thoracic curvature and global alignment. In patients with AIS, a hypokyphotic thoracic alignment or posterior global alignment was associated with a global cervical kyphosis. Interestingly, upper cervical and cranial parameters were not statistically different in all investigated groups, meaning that the upper cervical spine was not recruited for compensation in order to maintain a horizontal gaze.

Restricted access

Renaud Lafage, Ibrahim Obeid, Barthelemy Liabaud, Shay Bess, Douglas Burton, Justin S. Smith, Cyrus Jalai, Richard Hostin, Christopher I. Shaffrey, Christopher Ames, Han Jo Kim, Eric Klineberg, Frank Schwab, Virginie Lafage and the International Spine Study Group

OBJECTIVE

The surgical correction of adult spinal deformity (ASD) often involves modifying lumbar lordosis (LL) to restore ideal sagittal alignment. However, corrections that include large changes in LL increase the risk for development of proximal junctional kyphosis (PJK). Little is known about the impact of cranial versus caudal correction in the lumbar spine on the occurrence of PJK. The goal of this study was to investigate the impact of the location of the correction on acute PJK development.

METHODS

This study was a retrospective review of a prospective multicenter database. Surgically treated ASD patients with early follow-up evaluations (6 weeks) and fusions of the full lumbosacral spine were included. Radiographic parameters analyzed included the classic spinopelvic parameters (pelvic incidence [PI], pelvic tilt [PT], PI−LL, and sagittal vertical axis [SVA]) and segmental correction. Using Glattes’ criteria, patients were stratified into PJK and noPJK groups and propensity matched by age and regional lumbar correction (ΔPI−LL). Radiographic parameters and segmental correction were compared between PJK and noPJK patients using independent t-tests.

RESULTS

After propensity matching, 312 of 483 patients were included in the analysis (mean age 64 years, 76% women, 40% with PJK). There were no significant differences between PJK and noPJK patients at baseline or postoperatively, or between changes in alignment, with the exception of thoracic kyphosis (TK) and ΔTK. PJK patients had a decrease in segmental lordosis at L4-L5-S1 (−0.6° vs 1.6°, p = 0.025), and larger increases in segmental correction at cranial levels L1-L2-L3 (9.9° vs 7.1°), T12-L1-L2 (7.3° vs 5.4°), and T11-T12-L1 (2.9° vs 0.7°) (all p < 0.05).

CONCLUSIONS

Although achievement of an optimal sagittal alignment is the goal of realignment surgery, dramatic lumbar corrections appear to increase the risk of PJK. This study was the first to demonstrate that patients who developed PJK underwent kyphotic changes in the L4–S1 segments while restoring LL at more cranial levels (T12–L3). These findings suggest that restoring lordosis at lower lumbar levels may result in a decreased risk of developing PJK.

Restricted access

Blake N. Staub, Renaud Lafage, Han Jo Kim, Christopher I. Shaffrey, Gregory M. Mundis Jr., Richard Hostin, Douglas Burton, Lawrence Lenke, Munish C. Gupta, Christopher Ames, Eric Klineberg, Shay Bess, Frank Schwab, Virginie Lafage and the International Spine Study Group

OBJECTIVE

Numerous studies have attempted to delineate the normative value for T1S−CL (T1 slope minus cervical lordosis) as a marker for both cervical deformity and a goal for correction similar to how PI-LL (pelvic incidence–lumbar lordosis) mismatch informs decision making in thoracolumbar adult spinal deformity (ASD). The goal of this study was to define the relationship between T1 slope (T1S) and cervical lordosis (CL).

METHODS

This is a retrospective review of a prospective database. Surgical ASD cases were initially analyzed. Analysis across the sagittal parameters was performed. Linear regression analysis based on T1S was used to provide a clinically applicable equation to predict CL. Findings were validated using the postoperative alignment of the ASD patients. Further validation was then performed using a second, normative database. The range of normal alignment associated with horizontal gaze was derived from a multilinear regression on data from asymptomatic patients.

RESULTS

A total of 103 patients (mean age 54.7 years) were included. Analysis revealed a strong correlation between T1S and C0–7 lordosis (r = 0.886), C2–7 lordosis (r = 0.815), and C0–2 lordosis (r = 0.732). There was no significant correlation between T1S and T1S−CL. Linear regression analysis revealed that T1S−CL assumed a constant value of 16.5° (R2 = 0.664, standard error 2°). These findings were validated on the postoperative imaging (mean absolute error [MAE] 5.9°). The equation was then applied to the normative database (MAE 6.7° controlling for McGregor slope [MGS] between −5° and 15°). A multilinear regression between C2–7, T1S, and MGS demonstrated a range of T1S−CL between 14.5° and 26.5° was necessary to maintain horizontal gaze.

CONCLUSIONS

Normative CL can be predicted via the formula CL = T1S − 16.5° ± 2°. This implies a threshold of deformity and aids in providing a goal for surgical correction. Just as pelvic incidence (PI) can be used to determine the ideal LL, T1S can be used to predict ideal CL. This formula also implies that a kyphotic cervical alignment is to be expected for individuals with a T1S < 16.5°.